
USE IMPROVE EVANGELIZE

Performance Tuning Linux
Applications With DTrace
Adam Leventhal
Solaris Kernel Development
Sun Microsystems

http://blogs.sun.com/ahl

2

USE IMPROVE EVANGELIZE

Application Sprawl

● Applications are no longer simple entities
● Complex heterogeneous systems
● Rapid development trumps systemic

simplicity
● Definition of the application is expanding

to include the operating environment

3

USE IMPROVE EVANGELIZE

Performance Still Rules

● A heterogeneous system may be faster
to develop, but...

● It can be more difficult to understand
● Therefore much more difficult to drive

performance problems to a root-cause
● The age of solely solving performance

problems with more gear is over
– Consider cost, power, cooling, space, etc.

4

USE IMPROVE EVANGELIZE

● Application-centric tools are narrow in
scope, developer-focused, and not
suitable for use in production

● Systemic tools are static, and difficult to
correlate to specific application behavior

● Need a tool with systemic scope, that's
dynamic, and can be used in production

Performance Tools

5

USE IMPROVE EVANGELIZE

DTrace

● Systemic analysis tool for system
administrators and developers

● Offers dynamic instrumentation of user-
land applications and the kernel

● Probes at any user-land instruction and
throughout the kernel

● Most systems start with ~30,000 probes
● Probes are also created dynamically

6

USE IMPROVE EVANGELIZE

DTrace, cont.

● No overhead when not in use
● No application recompile or restart

needed
● Dynamic control language for arbitrary

actions and predicates
● Powerful data management primitives for

accumulation and analysis
● Speculative tracing, thread-local

variables, and much more...

7

USE IMPROVE EVANGELIZE

Probes

● A probe is a point of instrumentation
● A probe is made available by a provider
● Each probe identifies the module and

function that it instruments
● Each probe also has a name
● Such a four-tuple uniquely identifies

every probe

8

USE IMPROVE EVANGELIZE

Providers

● A provider represents a way to
instrument the system

● Providers make probes available to the
DTrace framework

● The DTrace framework informs providers
when a probe is to be enabled

● Providers transfer control to DTrace
when an enabled probe is hit

9

USE IMPROVE EVANGELIZE

Listing Probes

● Probes can be listed with the “-l” option to
dtrace(1M)

● For each probe, the identifying four-tuple
is displayed

● Probe tuple components can be specified
in a colon-delimited list

● Empty components match anything
● For example: “syscall::open:entry”

10

USE IMPROVE EVANGELIZE

Enabling Probes

● Probes are enabled by specifying them
without the “-l” option

● When enabled in this way, probes are
enabled with the default action

● The default action will indicate only that
the probe fired

11

USE IMPROVE EVANGELIZE

Actions

● Actions are taken when a probe fires
● Most actions record some system state
● Some actions change the state of the

system system in a well-defined way
– These are called destructive actions

– Disabled by default

● Many actions take as parameters
expressions in the D language

12

USE IMPROVE EVANGELIZE

The D Language

● D is a C-like language specific to DTrace,
with some constructs similar to awk(1)

● Complete support for ANSI-C operators
● Support for strings as first-class citizen
● We'll introduce D features as we need

them...

13

USE IMPROVE EVANGELIZE

Built-In D Variables

● For now, our D expressions will consist
only of built-in variables

● Example of built-in variables:
– pid is the current process ID

– execname is the current executable name

– timestamp is the time since boot, in
nanoseconds

– probeprov, probemod, probefunc and
probename identify the current probe

14

USE IMPROVE EVANGELIZE

The “trace()” Action

● trace() records the result of a D
expression to the trace buffer

● For example:
– trace(pid) traces the current process ID

– trace(execname) traces the name of the
current executable

– trace(probefunc) traces the function name of
the probe

15

USE IMPROVE EVANGELIZE

Predicates

● Predicates allow actions to only be taken
when certain conditions are met

● A predicate is a D expression
● Actions will only be taken if the predicate

expression evaluates to true
● A predicate takes the form “/expression/”

and is placed between the probe
description and the action

16

USE IMPROVE EVANGELIZE

Aggregations

● When trying to understand suboptimal
performance, one often looks for patterns
that point to bottlenecks

● When looking for patterns, one often
doesn't want to study each datum – one
wishes to aggregate the data and look for
larger trends

● Traditionally, one has had to use
conventional tools (e.g. awk(1), perl(1))

17

USE IMPROVE EVANGELIZE

Aggregations, cont.
● DTrace supports the aggregation of data

as a first class operation
● An aggregating function is a function f(x),

where x is a set of data, such that:
●

f(f(x0) f(x1) ... f(xn)) = f(x0 x1 ... xn)

● E.g., count, sum, maximum, and
minimum are aggregating functions;
median, and mode are not

18

USE IMPROVE EVANGELIZE

Aggregations, cont.

● Some aggregating functions:
– count(): the invocation count

– avg(): the average of specified expressions

– min(): the minimum of specified expressions

– max(): the maximum of specified
expressions

– quantize(): power-of-two distribution of
specified expressions

19

USE IMPROVE EVANGELIZE

Providers

● The pid provider defines a probe at the
entry and return for every function in
every process on the system

● Programs need not be recompiled or
even restarted

● The pid provider can also instrument any
instruction in any process

20

USE IMPROVE EVANGELIZE

Providers, cont.

● The sched provider defines probes
related to CPU scheduling
– on-cpu, off-cpu, sleep, wakeup, ...

● The io provider defines probes for I/O
– start, done, wait-start, wait-done

● The plockstat provider defines probes for
user-land synchronization primitives
– mutex-acquire, mutex-block, ...

21

USE IMPROVE EVANGELIZE

DTrace Wins In Production

+32%
Before
Lunch

Financial
Database

+35%
in an

Afternoon

Online Parcel
Tracking
System

+80%
in a Day

Futures
Forecasting
Application

+267%
in 2 Days

+300%
in 5 Hours

Message
Handing

Benchmark

Data
Routing

Application

22

USE IMPROVE EVANGELIZE

DTrace Availability

● DTrace is part of the OpenSolaris project
● First code in Solaris to be open sourced

(2/2005)

23

USE IMPROVE EVANGELIZE

So...

● DTrace is currently only available on
OpenSolaris

● DTrace had previously only been useful
for examining native Solaris programs

● But recently, a new OpenSolaris project
lets us apply DTrace to Linux
applications

24

USE IMPROVE EVANGELIZE

BrandZ

● The BrandZ project creates a Linux
emulation environment

● Creates a virtual Linux machine on
OpenSolaris

● Preview first released 12/2005

25

USE IMPROVE EVANGELIZE

What BrandZ Is Not

● Not a hardware virtualization layer
– e.g. Xen or VMware

● Hardware virtualization has advantages
– Run (mostly) unmodified operating systems

– Same abstractions as multiple boxes

● ... and some disadvantages
– Relatively opaque

– Heavy weight

26

USE IMPROVE EVANGELIZE

BrandZ Details

● Built on top of OpenSolaris Zones
– Lightweight virtualization technology

– Application containers – an über-chroot

● BrandZ (Branded Zones) add a system
call emulation layer

● The 'lx' brand implements the Linux
system call layer on top of the
OpenSolaris kernel

27

USE IMPROVE EVANGELIZE

BrandZ Details, cont.

● Install a complete Linux user-land
– Libraries, administration tools, etc.

● Unlike hardware virtualization, Zones and
BrandZ are transparent application
containers

● From the 'global' Zone, all Zones can be
observed

28

USE IMPROVE EVANGELIZE

● With BrandZ, we can examine Linux
applications with DTrace

● The pid provider trace Linux processes
● Various kernel providers give insight into

the basic operating system operations
● A new provider, lx-syscall, lets us trace

Linux system calls executed by the Linux
binaries

BrandZ and DTrace

29

USE IMPROVE EVANGELIZE

DEMO

30

USE IMPROVE EVANGELIZE

The Fine Print

● Results will be skewed due to the
emulation environment

● How much? YMMV
● Computation-intensive apps will have

little emulation perturbation
● Applications with many system calls will

show more variability
● Coarse features should still be visible

31

USE IMPROVE EVANGELIZE

The Good News

● Every application we've looked at on
OpenSolaris with DTrace has been
improved

● At JavaOne applications never before run
on Solaris were improved with DTrace

● Linux developers now have access to the
same level of observability

● Wins will transfer, but not always directly

32

USE IMPROVE EVANGELIZE

Get Involved

● DTrace and BrandZ are both available on
OpenSolaris.org

● Thriving communities and discussions
– http://www.opensolaris.org/os/community/dtrace/

– http://www.opensolaris.org/os/community/brandz

● Check out the communities, join the
discussions, download the bits, and get
your Linux application running faster

USE IMPROVE EVANGELIZE

Q & A
Adam Leventhal
Solaris Kernel Development
Sun Microsystems

http://blogs.sun.com/ahl

