
  

Introduction to USB

Alan Ott
SCaLE 15x

March 2-5, 2017



  

About the Presenter

● Platform Software Director at SoftIron
– 64-bit ARM servers and storage appliances
– OverDrive 3000/1000 servers (shipping now!)
– Storage products in design

● Linux Kernel
● Firmware
● Training
● USB

– M-Stack USB Device Stack for PIC
● 802.15.4 wireless



  

USB Overview



  

Universal Serial Bus

● Universal Serial Bus (USB)
● Standard for a high-speed, bi-directional, low-cost, 

dynamic bus.
● Created by the USB Implementers Forum

(USB-IF)
● USB-IF is a non-profit corporation formed

by its member companies.
● USB-IF develops and owns copyrights

on the standards documents and
logos.
– http://www.usb.org 

http://www.usb.org/


  

USB Bus Speeds

● Low Speed
● 1.5 Mb/sec

● Full Speed
● 12 Mb/sec

● High Speed
● 480 Mb/sec

● Super Speed
● 5.0 Gb/sec / 10Gb/sec



  

USB Bus Speeds

● Bus speeds are the rate of bit 
transmission on the bus

● Bus speeds are NOT data transfer speeds
● USB protocol can have significant 

overhead
● USB overhead can be mitigated if

your protocol is designed correctly.



  

USB Standards

● USB 1.1 – 1998
– Low Speed / Full Speed

● USB 2.0 – 2000
– High Speed added

● USB 3.0 – 2008
– SuperSpeed added

● USB Standards do NOT imply a
bus speed!

➢ A USB 2.0 device can be High
Speed, Full Speed, or Low Speed



  

Host and Device

● Host
● Often a PC, server, or embedded Linux system
● Responsible for control of the bus
● Responsible for initiating

communication with devices
● Responsible for enumeration of

attached devices.
● One host per bus



  

Host and Device

● Device
● Provide functionality to the host
● Many devices per bus
● Can connect through hubs

– Hubs are transparent to the device!
– Hubs are transparent to host APIs

● Hub drivers are built into the OS



  

The Bus

● USB is a Host-controlled bus
● Nothing on the bus happens without the

host first initiating it.
● Devices cannot initiate a transaction.
● The USB is a Polled Bus
● The Host polls each device, requesting

data or sending data.
● Devices cannot interrupt the host!



  

Device Classes

● Device classes are standard protocols for 
common device types.
● Same driver is used for every device

in to a device class.
– No need for a new driver for each brand of

thumb drive or mouse, for instance
● Allows true plug-and-play
● HID (input), Mass Storage, CDC

(communication: serial, network),
audio, hub, printer, etc.



  

Terminology

● In/Out
● In USB parlance, the terms In and Out indicate 

direction from the Host perspective.
– Out: Host to Device
– In: Device to Host



  

Logical USB Device

Configuration 1

Interface 0

Endpoint 1 OUT

Endpoint 1 IN

Endpoint 2 IN

Interface 1

Endpoint 3 OUT

Endpoint 3 IN

Configuration 2

Interface 0

Endpoint 1 OUT

Endpoint 1 IN

Interface 1

Endpoint 2 OUT

Endpoint 2 IN

USB Device



  

USB Terminology

● Device – Logical or physical entity which 
performs a function.
● Thumb drive, joystick, etc.

● Configuration – A mode in which to
operate.
● Many devices have one configuration.
● Only one configuration is active at a

time.



  

USB Terminology

● Interface – A related set of Endpoints which 
present a single feature or function to the host.
● A configuration may have multiple interfaces
● All interfaces in a configuration are active

at the same time.

● Endpoint – A source or sink of data
● Interfaces often contain multiple

endpoints, each active all the
time.



  

Logical USB Device

● Important to note:
● A device can have multiple configurations.

– Only one active at a time
● A configuration can have multiple

interfaces.
– All active at the same time

● An interface can have multiple
endpoints.
– All active at the same time



  

Logical USB Device

● Most USB devices only have one Configuration.
● Only one configuration can be active at a 

time.
● All interfaces within a configuration

are active at the same time.
● This is how composite devices are

implemented.



  

Endpoint Terminology

● An Endpoint Number is a 4-bit integer associated 
with an endpoint (0-15).

● An endpoint transfers data in a single direction.
● An Endpoint Direction is either IN or OUT.
● An Endpoint Address is the combination

of an endpoint number and an endpoint
direction. Examples:
● EP 1 IN
● EP 1 OUT
● EP 3 IN



  

Endpoint Terminology

● Endpoint addresses are encoded with the 
direction and number in a single byte.
● Direction is the MSb (1=IN, 0=OUT)
● Number is the lower four bits.
● Examples:

– EP 1 IN = 0x81
– EP 1 OUT = 0x01
– EP 3 IN = 0x83
– EP 3 OUT = 0x03

● Tools like lsusb will show both



  

Endpoint Terminology

● Endpoint terminology is tricky (but important!)
● A device can have up to 32 endpoints.

– IN and OUT endpoints for numbers 0-15.

● The same Endpoint Number is used to
describe TWO endpoints.
● EP 1 IN and EP 1 OUT are separate

endpoints!
● There is no such thing as a

physical and logical endpoint.



  

Real-Life Example

Configuration 1

Interface 0
CDC Control

USB Device

Interface 1
CDC Data

EP 2 OUT

EP 2 IN

EP 1 IN

Interface 1
Vendor-Defined

EP 3 OUT

EP 3 IN

● Composite Device:
– Communication 

Device Class (CDC)
● Often virtual serial 

port
● Two interfaces are 

required for this 
class (control and 
data).

– Vendor-Defined 
class

● Can be used for 
generic data 
transfer



  

Descriptors

● USB is a self-describing bus
● Each USB device contains all the information 

required for the host to be able to communicate with 
it (drivers aside)
– No manual setting of baud rates, IRQ lines,

base addresses, etc.
– Plug devices in and they work

● Devices communicate this data to
the host using descriptors.



  

Descriptors

● The host will ask for a set of standard 
descriptors during enumeration, immediately 
upon a device being attached.

● The descriptors describe:
● The device identifier (vendor/product IDs)
● The logical structure of the device

– Configurations, interfaces, endpoints
● Which device classes are

supported (if any)



  

Descriptors

● Typically, devices contain at least:
● Device descriptor
● Configuration descriptor
● Interface descriptor
● Class-specific descriptors
● Endpoint descriptor

➢ Chapter 9 of the USB spec describes
these standard descriptors



  

Descriptors

● One tricky thing is that the host will request all 
descriptors which are part of a configuration as 
a single block.
● This includes Configuration, Interface,

class-specific, and endpoint descriptors
➢ The Get Descriptor (Configuration)

request means all descriptors of a
configuration



  

Device Descriptor
const struct device_descriptor this_device_descriptor =

{

        sizeof(struct device_descriptor), // bLength

        DESC_DEVICE, // bDescriptorType

        0x0200, // USB Version: 0x0200 = USB 2.0, 0x0110 = USB 1.1

        0x00, // Device class (0 = defined at interface level)

        0x00, // Device Subclass

        0x00, // Protocol

        EP_0_LEN, // bMaxPacketSize0 (endpoint 0 in/out length)

        0xA0A0, // Vendor ID (Fake VID!! Don't use this one!)

        0x0001, // Product ID

        0x0001, // device release (BCD 1.0)

        1, // Manufacturer String Index

        2, // Product String Index

        0, // Serial Number String Index

        NUMBER_OF_CONFIGURATIONS // NumConfigurations

};



  

Configuration Descriptor

/*  The Configuration Packet, in this example, consists
 *  of four descriptor structs. Note that there is
 *  a single configurarion, a single interface, and two
 *  endpoints.
 */

struct configuration_1_packet {

        struct configuration_descriptor  config;

        struct interface_descriptor      interface;

        struct endpoint_descriptor       ep;

        struct endpoint_descriptor       ep1_out;

};



  

Configuration Descriptor (cont'd)
static const struct configuration_1_packet configuration_1 =

{

        {

        // Members from struct configuration_descriptor

        sizeof(struct configuration_descriptor),

        DESC_CONFIGURATION,

        sizeof(configuration_1), // wTotalLength (length of the whole packet)

        1, // bNumInterfaces

        1, // bConfigurationValue

        2, // iConfiguration (index of string descriptor)

        0X80, // bmAttributes

        100/2,   // 100/2 indicates 100mA

        },



  

Configuration Descriptor (cont'd)
        {

        // Members from struct interface_descriptor

        sizeof(struct interface_descriptor), // bLength;

        DESC_INTERFACE,

        0x0, // InterfaceNumber

        0x0, // AlternateSetting

        0x2, // bNumEndpoints (num besides endpoint 0)

        0xff, // bInterfaceClass: 0xFF=VendorDefined

        0x00, // bInterfaceSubclass

        0x00, // bInterfaceProtocol

        0x02, // iInterface (index of string describing interface)

        },



  

Configuration Descriptor (cont'd)
        {

        // Members of the Endpoint Descriptor (EP1 IN)

        sizeof(struct endpoint_descriptor),

        DESC_ENDPOINT,

        0x01 | 0x80, // endpoint #1 0x80=IN

        EP_BULK, // bmAttributes

        64, // wMaxPacketSize

        1,   // bInterval in ms.

        },

        {

        // Members of the Endpoint Descriptor (EP1 OUT)

        sizeof(struct endpoint_descriptor),

        DESC_ENDPOINT,

        0x01, // endpoint #1 OUT (msb clear => OUT)

        EP_BULK, // bmAttributes

        64, // wMaxPacketSize

        1,   // bInterval in ms.

        },

};



  

Configuration Descriptor

● Preceding configuration descriptor described:
● One Configuration
● One interface (vendor defined)
● Two Bulk Endpoints

● See examples in usb_descriptors.c
in any of the M-Stack examples.



  

Endpoints

● Four types of Endpoints
● Control

– Bi-directional pair of endpoints
– Multi-stage transfers

● Transfers acknowledged on the software level
– Not just hardware!

● Status stage can return success/failure

– Used during enumeration
– Can also be used for application
– Mostly used for configuration items
– Most robust type of endpoint



  

Endpoints

● Interrupt
– Transfers a small amount of low-latency data
– Reserves bandwidth on the bus
– Used for time-sensitive data (HID).

● Bulk
– Used for large, time-insensitive data

(Network packets, Mass Storage,
etc).

– Does not reserve bandwidth on bus
● Uses whatever time is left over



  

Endpoints

● Isochronous
– Transfers a large amount of time-sensitive data
– Delivery is not guaranteed

● No ACKs are sent

– Used for Audio and Video streams
● Late data is as good as no data
● Better to drop a frame than to delay and force

a re-transmission



  

Endpoints

● Reserved Bandwidth
● Different endpoint types will cause the bus to 

reserve bandwidth when devices are connected.
– This is how guaranteed, bounded latency is 

implemented.

● Interrupt, Isochronous, and Control
endpoints reserve bandwidth.

● Bulk gets whatever bandwidth is
left unused each frame.



  

Endpoints

● Endpoint Length
● The maximum amount of data an endpoint can 

support sending or receiving per transaction.
● Max endpoint sizes:

– Full-speed:
● Bulk/Interrupt: 64
● Isoc: 1024

– High-Speed:
● Bulk: 512
● Interrupt: 3072
● Isoc: 1024 x3



  

Transactions

● Basic process of moving data to and from a 
device.

● USB is host-controlled. All transactions are 
initiated by the host.
● Much like everything else in USB

● A single transaction can move up to
the Endpoint Length of bytes

● The entire transaction happens
at the hardware level



  

Transactions

● Transactions have three phases
● Token Phase

– Host sends a token packet to the device
● Indicates start of transaction
● Indicates type of transaction (IN/OUT/SETUP)

● Data Phase
– Host or Device sends data

● Handshake Phase
– Device or host sends

acknowledgement (ACK/NAK/Stall)



  

Transactions

● Transactions are handled on the Hardware 
level.
● Strict timing is necessary
● Software will configure the hardware to

handle the transaction conditions before
they occur.
– This means the software/firmware

must be prepared for what is coming!
– not reacting to what has happened

● Hardware will NAK if not configured



  

Transactions

● Endpoints are typically implemented in a 
hardware peripheral
● Typically the USB hardware device is called

the Serial Interface Engine (SIE)
● SIE contains registers for each endpoint.

– Pointer to data buffer (and length)
➢ Firmware will configure these registers

for transactions which are expected
● SIE generates Interrupts

when transactions complete



  

Transactions

● Token Phase
● The host will initiate every transaction by sending a 

token. Tokens contain a token type and an 
endpoint number.

● The device SIE will handle receipt of
the token and will handle the data and
handshake phases automatically.
– This means the SIE endpoint will need

to be configured before the token
comes from the host.



  

Transactions

● For most cases, the token types are:
● IN

– The transaction will be an IN transaction,
where the device sends data to the host using
an IN endpoint.

– Data phase will be device-to-host (ie: in)
– Handshake phase (ack) will be

host-to-device



  

Transactions

● Token types (cont'd):
● OUT

– The transaction will be an OUT transaction,
where the host sends data to the device using
an OUT endpoint.

– Data phase will be host-to-device (ie: out)
– Handshake phase (ack) will be

device-to-host.



  

Transactions

● Token types (cont'd):
● SETUP

– The transaction will be an SETUP transaction
● SETUP transactions are used to start a

Control Transfer on a Control endpoint pair.
– Usually endpoint 0

● Setup transactions indicate there will be
more transactions following, and what types
they will be.

– A Setup transaction is like an OUT
transaction, and the data phase
contains a SETUP packet.



  

Transactions

● Data Phase
● The data phase contains the data which is to be 

transferred.
● The data phase packet can be from zero

bytes up to the endpoint length.
● For IN transactions, the data packet is

sent from the device to the host
● For OUT or SETUP transactions,

the data packet is sent from the
host to the device.



  

Transactions

● Data Phase (cont'd)
● If there is no data to be sent, or if the device is unable 

to receive, the device can send a NAK as its data 
stage.
– This ends the transaction prematurely.

● A NAK tells the host to try again later.
– It is not a failure of any kind.
– NAKs are a normal part of the flow

regulation of USB.
➢ The Host is often faster than the device!



  

Transaction

● IN Transaction

● The device can NAK as long as it's
not ready to send data.

● The Host will retry (up to a timeout)
as long as the device NAKs.



  

Transaction

● OUT Transaction

● The device can NAK as long as it's
not ready to receive data.

● The Host will retry (up to a timeout)
as long as the device NAKs.



  

Transactions

● The timing between the phases is very tight
● Too tight for software/firmware

● The hardware SIE handles this timing
● The hardware endpoint needs to be setup

before the IN token arrives.

● This means you must be ahead of
the host, in a manner of speaking.



  

Transactions

● For IN transactions (device-to-host)
● Device firmware will put data to send in the

hardware SIE buffer
● Host will (sometime later) send the IN token
● Device SIE will send the data (data stage)

– Device SIE will resend until ACK is received
● Host will send and ACK to the device

➢ Note that the data will not get sent
until the host initiates the transaction
by sending the IN token to the device



  

Transactions

● For OUT transactions (host-to-device)
● Device firmware configures a hardware SIE buffer 

to receive data
● Host will (sometime later) send the OUT

token
● Host will send the data.
● Device SIE will send an ACK
● Device SIE will interrupt the

MCU/CPU.



  

Transactions and Transfers

● Transaction
● Delivery of service to an endpoint
● Max data size: Endpoint length

● Transfer
● One or more transactions moving

information between host and device.
➢ Transfers can be large, even on

small endpoints!



  

Small Transfers

Transfer

Transaction

● The simplest transfer 
contains a single 
transaction.

● A transaction's size can 
be any length from zero 
bytes up to the
endpoint length.

Transfer

Transaction

Transfer



  

Large Transfers

Transfer

Transaction

Transaction

Transaction

Transaction

Transaction

● Transfers can contain 
more than one 
transaction.

● Transfers are ended by:
● A short transaction

OR
● When the desired 

amount of data has 
been transferred
➢ As requested

by the host



  

Large Transfers

● Transfers are ended when:
● A short transaction happens
● The requested amount of data has been

transfered 

● A short transaction is one which is
smaller than the endpoint length.
● This means in a multi-transaction

transfer, all transactions except the
last must be the endpoint length



  

Large Transfers

● Sometimes a host does not know the number 
of bytes it is asking for.
● For example a string descriptor.

● The host will ask for the maximum
number of bytes it can accept and will
rely on the device to end the
transfer early.

● This gives an interesting edge
case



  

Large Transfers

● There are four cases of large transfers. Let's 
consider IN transfers:
● Case 1:

– Host asks for a number of bytes which is
not a multiple of the endpoint length.

– device returns this many bytes.
● Case 2:

– Host asks for a multiple of the
endpoint length.

– device returns this many bytes.



  

Large Transfers

● Four cases (cont'd):
● Case 3:

– Host asks for a number of bytes
– device returns fewer than requested, which

is not a multiple of the endpoint length.
● Case 4:

– Host asks for a number of bytes
– device returns fewer than

requested, but it is a multiple of
the endpoint length



  

Large Transfers

● In cases #1, #2, and #3, the device can simply 
return the number of bytes it intends to return.



  

Large Transfers – Case 1

Transfer

Transaction

Transaction

Transaction

Transaction

Transaction

● Case 1:
● Host asks for a number of 

bytes which is not a multiple 
of the endpoint length.

● Device Returns this many 
bytes.

● Transfer is ended by:
● A short transaction

AND
● The desired amount of data 

has been transferred

● 16-byte endpoint length
● Requested 76 bytes
● 4x 16-byte transactions
● 1x 12-byte transaction



  

Large Transfers – Case 2

Transfer

Transaction

Transaction

Transaction

Transaction

● Case 2:
● Host asks for a number of 

bytes which is a multiple of 
the endpoint length.

● Device Returns this many 
bytes.

● Transfer is ended by:
● The requested amount of 

data has been transferred

● 16-byte endpoint length
● Requested 64 bytes
● 4x 16-byte transactions



  

Large Transfers – Case 3

Transfer

Transaction

Transaction

● Case 3:
● Host asks for a number of 

bytes.
● Device returns fewer than 

requested, which
is not a multiple of the 
endpoint length.

● Transfer is ended by:
● A short transaction

● 16-byte endpoint length
● Requested 255 bytes
● Device returns 44 bytes
● 2x 16-byte transactions
● 1x 12-byte transaction

Transaction



  

Large Transfers

● Case #4 is an edge case
– Host requested a number of bytes
– Device returns fewer than requested, which

is a multiple of the endpoint length.
● Since the number of bytes being

returned is a multiple of the endpoint
length, the transfer will not naturally
end with a short transaction.

● Device must add a zero-length
packet!
– A real hootenanny to keep track of...



  

Large Transfers – Case 4

Transfer

Transaction

Transaction

● Case 4:
● Host asks for a number of 

bytes.
● Device returns fewer than 

requested, which
is a multiple of the endpoint 
length.

● Transfer is ended by:
● A short transaction, in this 

case a zero-length packet

● 16-byte endpoint length
● Requested 255 bytes
● Device returns 32 bytes
● 2x 16-byte transactions
● 1x 0-byte transaction



  

Control Transfers

● The transfers discussed so far have been Bulk 
or Interrupt transfers.

● Control transfers are different and more 
complicated.
● Control transfers have additional

structure and are bi-directional.
● Information is sent both ways (IN and

OUT)



  

Control Transfers

● Control transfers begin with a SETUP 
transaction.
● A SETUP transaction is like an OUT transaction 

except that the data stage is an 8-byte
SETUP packet.
– The SETUP packet has information on:

● The logical recipient of the transfer
● The direction of the transfer
● The number of bytes which will be sent

or requested
● The identifier or type of the request



  

Control Transfers

● Chapter 9 of the USB specification defines 
standard requests which are used during 
enumeration of a device.
● Set Address
● Get Descriptor
● Get Configuration
● Set Configuration

others...



  

Control Transfers

● Device classes also define their own requests:
● CDC (Communication Device Class)

– Set Line Coding
– Set Control Line State
– Send Break

● HID (Human Interface Device)
– Get Report Descriptor
– Get Report
– Set Report



  

M-Stack



  

M-Stack

● M-Stack is a USB device stack for PIC 
microcontrollers by Signal 11 Software
● Free/Open Source

– Dual licensed Apache + GPL
● Implements:

– Vendor-defined devices
(ie: no device class)

– HID (Human Interface)
– CDC/ACM (Virtual serial port)
– MSC (Mass Storage)



  

M-Stack

● M-Stack supports a variety of PIC micros:
● 8-bit (PIC16, PIC18)
● 16-bit (PIC24)
● 32-bit (PIC32MX) (no MZ yet)

● Complexity of the SIE is hidden as
much as possible.
➢ It's impossible to abstract away

knowledge of USB

● www.signal11.us/oss/m-stack 



  

M-Stack

● M-Stack is configured statically through the 
usb_config.h file, which is part of every M-Stack 
application.

● This configuration header can:
– Enable endpoints for use
– Set endpoint lengths
– Configure ping-pong SIE modes
– Configure M-Stack to use interrupts
– Set callback functions for common

events



  

M-Stack

● M-Stack automatically creates and handles the 
buffers for each endpoint.
● MCU-specific constraints (allowed memory

regions and alignment) are handled
transparently.

● Ping-pong mode selection will
automatically cause the appropriate
number of buffers to be allocated.

● Application code is simple!

http://www.signal11.us/oss/m-stack


  

M-Stack

● Examples are provided for each device class 
which work on a range of PIC micros.

● Easiest way to get started is to copy
an example and modify it.

● Examples are under an unrestricted
license
➢ Intended to be used as a starting

point.



  

M-Stack

● The most basic example is the unit_test 
example.
● Provides a limited loopback interface on two

bulk endpoints.
● Acts as a source and sink on the

control endpoint.



  

Receive Data Exampleint main (void)
{
    /* Initialize M-Stack */
    usb_init();

    while (1) {
        /* Wait for data from the host on EP 1 OUT */
        if (usb_is_configured() && usb_out_endpoint_has_data(1)) {
            uint8_t len;
            const unsigned char *data;

            /* Data has been received from the host.
               Get a pointer to the data */
            len = usb_get_out_buffer(1, &data);
        
            /* Process the data in your application */
            my_process_data_function(data, len);

            /* Re-arm the endpoint. Don't touch *data after this */
            usb_arm_out_endpoint(1);
        }
    }
    return 0;
}



  

M-Stack API Functions

● void usb_init(void)
● Initialize the USB peripheral
● If attached, this will advertise to the host

that it is ready to be enumerated.
● Can be run when attached or detached.
● Typically run at the beginning of

execution when other hardware is
already initialized.



  

M-Stack API Functions

● bool usb_is_configured(void)
● Returns true if the USB device is configured.

➢ The host issues a Set Configuration
request as the last step of enumeration.

● This function will return false if the host
unconfigures the device. This is rare.



  

M-Stack API Functions

● bool usb_endpoint_has_data(uint8_t ep)

● Returns true if the OUT endpoint specified
has received any data.

● Remember that IN/OUT are from the host
perspective.



  

M-Stack API Functions

● int8_t usb_get_out_buffer(
           uint8_t ep,
           const unsigned char **buffer)

● Sets *buffer to point to the OUT buffer
for the endpoint specified.

● Returns the number of bytes actually
received.



  

M-Stack API Functions

● void usb_arm_out_endpoint(uint8_t ep)

● Return the endpoint buffer for the specified 
endpoint to SIE control, effectively setting it up
to receive the next transaction.

● Only call this once you are done with the
buffer returned by usb_get_out_buffer()



  

Send Data Exampleint main (void) {
    /* Initialize M-Stack */
    usb_init();

    while (1) {
        /* Make sure the endpoint is not busy! */
        if (usb_is_configured() && !usb_in_endpoint_busy(1)) {
            uint8_t len;
            unsigned char *data = usb_get_in_buffer(1);

            /* Get some data from your application. Assume this
               function populates data, which is the EP buffer. */
            my_populate_data_function(data, &len);

            /* Send the data that was put into
               the buffer (above) */
            usb_send_in_buffer(1, len);
        }
    }
    return 0;
}



  

M-Stack API Functions

● bool usb_in_endpoint_busy(uint8_t ep)

● Returns true if the specified endpoint has a free SIE 
buffer available for use.

● If the return is true, then it's safe to call 
usb_get_in_buffer() (to get a
pointer to the buffer) and write to it.



  

M-Stack API Functions

● unsigned char *get_in_buffer(uint8_t ep)

● Get a pointer to the specified endpoint's IN buffer.
● Only call this after you have called 
usb_in_endpoint_busy() on the same
endpoint (and it has returned false).

● After calling this function, data which
is to be sent to the host can be copied
to buffer.



  

M-Stack API Functions

● void *usb_send_in_buffer(
               uint8_t ep, size_t len)

● Send the data in the specified endpoint to the
host.

● Data should have already been copied
into the endpoint's buffer.



  

libusb



  

libusb

● libusb is a multi-platform host-side USB library
● Linux, BSD, OS X, Windows, others

● Runs in user space. No kernel
programming required.

● Easy to use synchronous API
● High-performance asynchronous API
● Supports all versions of USB
● http://libusb.info



  

libusb

● Unlike an M-Stack device, a libusb host runs on 
a general purpose multi-process OS.
● Sufficient permissions are required to open

a device
● Opening a device or interface may be

exclusive (only one process at a time).



  

libusb

● From a host perspective, the basic unit of a 
USB connection is the USB interface, not the
device.
● This is because devices can have multiple

interfaces, each of which may require a
different driver.

● Some composite devices may have
some standard interfaces (eg: CDC)
and also some vendor-defined
interfaces (eg: earlier example)

http://libusb.info/


  

libusb Exampleint main(int argc, char **argv)
{
        libusb_device_handle *handle;
        unsigned char buf[64];
        int length = 64, actual_length, i, res;

        /* Init libusb */
        if (libusb_init(NULL))
                return -1;

        /* Open the device. This is a shortcut function. */
        handle = libusb_open_device_with_vid_pid(
                                        NULL, 0xa0a0, 0x0001);
        if (!handle) {
                perror("libusb_open failed: ");
                return 1;
        }

        /* Claim the interface for this process */
        res = libusb_claim_interface(handle, 0);
        if (res < 0) {
                perror("claim interface");
                return 1;
        }



  

libusb Example (cont'd)
        /* Initialize the data */
        my_init_data_function(buf, length);

        /* Send some data to the device */
        res = libusb_bulk_transfer(
                   handle, 0x01, buf, length, &actual_length, 5000);
        if (res < 0) {
                fprintf(stderr, "bulk transfer (out): %s\n",
                                             libusb_error_name(res));
                return 1;
        }

        /* Receive data from the device */
        res = libusb_bulk_transfer(handle, 0x81, buf, length, 
                                                  &actual_length, 5000);
        if (res < 0) {
                fprintf(stderr, "bulk transfer (in): %s\n", 
                                                libusb_error_name(res));
                return 1;
        }

        /* Process the data */
        my_process_received_data_function(buf, &actual_length);

        return 0;
}



  

libusb

● Observations:
● libusb, and libusb_bulk_transfer() deal 

with transfers, not transactions.
– The length can be arbitrarily long and longer

than the endpoint length.
– If so, libusb will behave as expected, initiating 

transactions until the required amount of
data has been transferred.

– If the device returns a short packet, the
transfer will end, and actual_length
will indicate the actual amount of
data received.



  

libusb

● Observations (cont'd):
● The libusb_bulk_transfer() function is used 

for both IN and OUT transfers
– The endpoint address (which contains the

direction) is used to determine whether it's an
IN or OUT transfer.



  

libusb

● Observations (cont'd):
● The interface must be claimed before

it can be used.
– If another process, or a kernel driver, is using

this interface, it will kick the other driver off.
– This can be good or bad depending on your

point of view.



  

libusb

● Observations (cont'd):
● The libusb functions take a timeout parameter.

– This timeout is how long the device has to
complete the transfer.

– It can be any value the host desires
● The host is in charge of the bus!

– 5 seconds is good for general purposes,
but the author recently made one over
90 seconds!

● It all depends on the use case!



  

libusb

● The previous example was very easy to use, 
and may be good for many use cases.

● However, repeatedly sending transfers
using libusb's syncrhonous API is not
the best method in performance-critical
situations.

● Why is this?



  

Synchronous API Issues

● USB Bus
● After one transfer completes, nothing happens on 

the bus until the next libusb transfer function is 
called.

● One might think it's good enough to call
libusb_bulk_transfer() in a tight loop.
– Tight loops are not tight enough!

● For short transfers time spent in software
will be more than time spent in
hardware!

● All time spent in software is time a
transfer is not active!



  

Asynchronous API

● Fortunately libusb and the kernel provide an 
asynchronous API.
● Create multiple transfer objects
● Submit transfer objects to the kernel
● Receive a callback when transfers

complete

● When a transfer completes, there is
another (submitted) transfer
already queued.
● No downtime between transfers!



  

Asynchronous API Example
static struct libusb_transfer 
*create_transfer(libusb_device_handle *handle, size_t length) {
        struct libusb_transfer *transfer;
        unsigned char *buf;

        /* Set up the transfer object. */
        buf = malloc(length);
        transfer = libusb_alloc_transfer(0);
        libusb_fill_bulk_transfer(transfer,
                handle,
                0x81 /*ep*/,
                buf,
                length,
                read_callback,
                NULL/*cb data*/,
                5000/*timeout*/);

        return transfer;
}



  

Asynchronous API Example (cont'd)
static void read_callback(struct libusb_transfer *transfer)
{
        int res;
        
        if (transfer->status == LIBUSB_TRANSFER_COMPLETED) {
                /* Success! Handle data received */
        }
        else {
                printf("Error: %d\n", transfer->status);
        }

        /* Re-submit the transfer object. */
        res = libusb_submit_transfer(transfer);
        if (res != 0) {
                printf("submitting. error code: %d\n", res);
        }
}



  

Asynchronous API Example (cont'd)
        /* Create Transfers */
        for (i = 0; i < 32; i++) {
                struct libusb_transfer *transfer =
                        create_transfer(handle, buflen);
                libusb_submit_transfer(transfer);
        }

        /* Handle Events */
        while (1) {
                res = libusb_handle_events(usb_context);
                if (res < 0) {
                        printf("handle_events()error # %d\n",
                               res);

                        /* Break out of this loop only on fatal error.*/
                        if (res != LIBUSB_ERROR_BUSY &&
                            res != LIBUSB_ERROR_TIMEOUT &&
                            res != LIBUSB_ERROR_OVERFLOW &&
                            res != LIBUSB_ERROR_INTERRUPTED) {
                                break;
                        }
                }
        }



  

Asynchronous API

● This example creates and queues 32 
transfers.

● When a transfer completes, the completed 
transfer object is re-queued.

● All the transfers in the queue can
conceivably complete without a trip
to user space.



  

Asynchronous API

● For All types of Endpoint:
● The Host will not send any IN or

OUT tokens on the bus unless a
transfer object is active.

● The bus is idle otherwise
● Create and submit a transfer object

using the functions on the preceding
slides.



  

Performance

● For more information on USB performance, see 
my ELC 2014 presentation titled USB and the 
Real World
● http://www.signal11.us/oss/elc2014/ 

➢ Several devices and methods compared



  

Alan Ott
alan@softiron.com 
www.softiron.com

+1 407-222-6975 (GMT -5)


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 108

