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– OverDrive 3000/1000 servers (shipping now!)
– Storage products in design

● Linux Kernel
● Firmware
● Training
● USB

– M-Stack USB Device Stack for PIC
● 802.15.4 wireless



  

USB Overview



  

Universal Serial Bus

● Universal Serial Bus (USB)
● Standard for a high-speed, bi-directional, low-cost, 

dynamic bus.
● Created by the USB Implementers Forum

(USB-IF)
● USB-IF is a non-profit corporation formed

by its member companies.
● USB-IF develops and owns copyrights

on the standards documents and
logos.
– http://www.usb.org 

http://www.usb.org/


  

USB Bus Speeds

● Low Speed
● 1.5 Mb/sec

● Full Speed
● 12 Mb/sec

● High Speed
● 480 Mb/sec

● Super Speed
● 5.0 Gb/sec / 10Gb/sec



  

USB Bus Speeds

● Bus speeds are the rate of bit 
transmission on the bus

● Bus speeds are NOT data transfer speeds
● USB protocol can have significant 

overhead
● USB overhead can be mitigated if

your protocol is designed correctly.



  

USB Standards

● USB 1.1 – 1998
– Low Speed / Full Speed

● USB 2.0 – 2000
– High Speed added

● USB 3.0 – 2008
– SuperSpeed added

● USB Standards do NOT imply a
bus speed!

➢ A USB 2.0 device can be High
Speed, Full Speed, or Low Speed



  

Host and Device

● Host
● Often a PC, server, or embedded Linux system
● Responsible for control of the bus
● Responsible for initiating

communication with devices
● Responsible for enumeration of

attached devices.
● One host per bus



  

Host and Device

● Device
● Provide functionality to the host
● Many devices per bus
● Can connect through hubs

– Hubs are transparent to the device!
– Hubs are transparent to host APIs

● Hub drivers are built into the OS



  

The Bus

● USB is a Host-controlled bus
● Nothing on the bus happens without the

host first initiating it.
● Devices cannot initiate a transaction.
● The USB is a Polled Bus
● The Host polls each device, requesting

data or sending data.
● Devices cannot interrupt the host!



  

Device Classes

● Device classes are standard protocols for 
common device types.
● Same driver is used for every device

in to a device class.
– No need for a new driver for each brand of

thumb drive or mouse, for instance
● Allows true plug-and-play
● HID (input), Mass Storage, CDC

(communication: serial, network),
audio, hub, printer, etc.



  

Terminology

● In/Out
● In USB parlance, the terms In and Out indicate 

direction from the Host perspective.
– Out: Host to Device
– In: Device to Host



  

Logical USB Device

Configuration 1

Interface 0

Endpoint 1 OUT

Endpoint 1 IN

Endpoint 2 IN

Interface 1

Endpoint 3 OUT

Endpoint 3 IN

Configuration 2

Interface 0

Endpoint 1 OUT

Endpoint 1 IN

Interface 1

Endpoint 2 OUT

Endpoint 2 IN

USB Device



  

USB Terminology

● Device – Logical or physical entity which 
performs a function.
● Thumb drive, joystick, etc.

● Configuration – A mode in which to
operate.
● Many devices have one configuration.
● Only one configuration is active at a

time.



  

USB Terminology

● Interface – A related set of Endpoints which 
present a single feature or function to the host.
● A configuration may have multiple interfaces
● All interfaces in a configuration are active

at the same time.

● Endpoint – A source or sink of data
● Interfaces often contain multiple

endpoints, each active all the
time.



  

Logical USB Device

● Important to note:
● A device can have multiple configurations.

– Only one active at a time
● A configuration can have multiple

interfaces.
– All active at the same time

● An interface can have multiple
endpoints.
– All active at the same time



  

Logical USB Device

● Most USB devices only have one Configuration.
● Only one configuration can be active at a 

time.
● All interfaces within a configuration

are active at the same time.
● This is how composite devices are

implemented.



  

Endpoint Terminology

● An Endpoint Number is a 4-bit integer associated 
with an endpoint (0-15).

● An endpoint transfers data in a single direction.
● An Endpoint Direction is either IN or OUT.
● An Endpoint Address is the combination

of an endpoint number and an endpoint
direction. Examples:
● EP 1 IN
● EP 1 OUT
● EP 3 IN



  

Endpoint Terminology

● Endpoint addresses are encoded with the 
direction and number in a single byte.
● Direction is the MSb (1=IN, 0=OUT)
● Number is the lower four bits.
● Examples:

– EP 1 IN = 0x81
– EP 1 OUT = 0x01
– EP 3 IN = 0x83
– EP 3 OUT = 0x03

● Tools like lsusb will show both



  

Endpoint Terminology

● Endpoint terminology is tricky (but important!)
● A device can have up to 32 endpoints.

– IN and OUT endpoints for numbers 0-15.

● The same Endpoint Number is used to
describe TWO endpoints.
● EP 1 IN and EP 1 OUT are separate

endpoints!
● There is no such thing as a

physical and logical endpoint.



  

Real-Life Example

Configuration 1

Interface 0
CDC Control

USB Device

Interface 1
CDC Data

EP 2 OUT

EP 2 IN

EP 1 IN

Interface 1
Vendor-Defined

EP 3 OUT

EP 3 IN

● Composite Device:
– Communication 

Device Class (CDC)
● Often virtual serial 

port
● Two interfaces are 

required for this 
class (control and 
data).

– Vendor-Defined 
class

● Can be used for 
generic data 
transfer



  

Descriptors

● USB is a self-describing bus
● Each USB device contains all the information 

required for the host to be able to communicate with 
it (drivers aside)
– No manual setting of baud rates, IRQ lines,

base addresses, etc.
– Plug devices in and they work

● Devices communicate this data to
the host using descriptors.



  

Descriptors

● The host will ask for a set of standard 
descriptors during enumeration, immediately 
upon a device being attached.

● The descriptors describe:
● The device identifier (vendor/product IDs)
● The logical structure of the device

– Configurations, interfaces, endpoints
● Which device classes are

supported (if any)



  

Descriptors

● Typically, devices contain at least:
● Device descriptor
● Configuration descriptor
● Interface descriptor
● Class-specific descriptors
● Endpoint descriptor

➢ Chapter 9 of the USB spec describes
these standard descriptors



  

Descriptors

● One tricky thing is that the host will request all 
descriptors which are part of a configuration as 
a single block.
● This includes Configuration, Interface,

class-specific, and endpoint descriptors
➢ The Get Descriptor (Configuration)

request means all descriptors of a
configuration



  

Device Descriptor
const struct device_descriptor this_device_descriptor =

{

        sizeof(struct device_descriptor), // bLength

        DESC_DEVICE, // bDescriptorType

        0x0200, // USB Version: 0x0200 = USB 2.0, 0x0110 = USB 1.1

        0x00, // Device class (0 = defined at interface level)

        0x00, // Device Subclass

        0x00, // Protocol

        EP_0_LEN, // bMaxPacketSize0 (endpoint 0 in/out length)

        0xA0A0, // Vendor ID (Fake VID!! Don't use this one!)

        0x0001, // Product ID

        0x0001, // device release (BCD 1.0)

        1, // Manufacturer String Index

        2, // Product String Index

        0, // Serial Number String Index

        NUMBER_OF_CONFIGURATIONS // NumConfigurations

};



  

Configuration Descriptor

/*  The Configuration Packet, in this example, consists
 *  of four descriptor structs. Note that there is
 *  a single configurarion, a single interface, and two
 *  endpoints.
 */

struct configuration_1_packet {

        struct configuration_descriptor  config;

        struct interface_descriptor      interface;

        struct endpoint_descriptor       ep;

        struct endpoint_descriptor       ep1_out;

};



  

Configuration Descriptor (cont'd)
static const struct configuration_1_packet configuration_1 =

{

        {

        // Members from struct configuration_descriptor

        sizeof(struct configuration_descriptor),

        DESC_CONFIGURATION,

        sizeof(configuration_1), // wTotalLength (length of the whole packet)

        1, // bNumInterfaces

        1, // bConfigurationValue

        2, // iConfiguration (index of string descriptor)

        0X80, // bmAttributes

        100/2,   // 100/2 indicates 100mA

        },



  

Configuration Descriptor (cont'd)
        {

        // Members from struct interface_descriptor

        sizeof(struct interface_descriptor), // bLength;

        DESC_INTERFACE,

        0x0, // InterfaceNumber

        0x0, // AlternateSetting

        0x2, // bNumEndpoints (num besides endpoint 0)

        0xff, // bInterfaceClass: 0xFF=VendorDefined

        0x00, // bInterfaceSubclass

        0x00, // bInterfaceProtocol

        0x02, // iInterface (index of string describing interface)

        },



  

Configuration Descriptor (cont'd)
        {

        // Members of the Endpoint Descriptor (EP1 IN)

        sizeof(struct endpoint_descriptor),

        DESC_ENDPOINT,

        0x01 | 0x80, // endpoint #1 0x80=IN

        EP_BULK, // bmAttributes

        64, // wMaxPacketSize

        1,   // bInterval in ms.

        },

        {

        // Members of the Endpoint Descriptor (EP1 OUT)

        sizeof(struct endpoint_descriptor),

        DESC_ENDPOINT,

        0x01, // endpoint #1 OUT (msb clear => OUT)

        EP_BULK, // bmAttributes

        64, // wMaxPacketSize

        1,   // bInterval in ms.

        },

};



  

Configuration Descriptor

● Preceding configuration descriptor described:
● One Configuration
● One interface (vendor defined)
● Two Bulk Endpoints

● See examples in usb_descriptors.c
in any of the M-Stack examples.



  

Endpoints

● Four types of Endpoints
● Control

– Bi-directional pair of endpoints
– Multi-stage transfers

● Transfers acknowledged on the software level
– Not just hardware!

● Status stage can return success/failure

– Used during enumeration
– Can also be used for application
– Mostly used for configuration items
– Most robust type of endpoint



  

Endpoints

● Interrupt
– Transfers a small amount of low-latency data
– Reserves bandwidth on the bus
– Used for time-sensitive data (HID).

● Bulk
– Used for large, time-insensitive data

(Network packets, Mass Storage,
etc).

– Does not reserve bandwidth on bus
● Uses whatever time is left over



  

Endpoints

● Isochronous
– Transfers a large amount of time-sensitive data
– Delivery is not guaranteed

● No ACKs are sent

– Used for Audio and Video streams
● Late data is as good as no data
● Better to drop a frame than to delay and force

a re-transmission



  

Endpoints

● Reserved Bandwidth
● Different endpoint types will cause the bus to 

reserve bandwidth when devices are connected.
– This is how guaranteed, bounded latency is 

implemented.

● Interrupt, Isochronous, and Control
endpoints reserve bandwidth.

● Bulk gets whatever bandwidth is
left unused each frame.



  

Endpoints

● Endpoint Length
● The maximum amount of data an endpoint can 

support sending or receiving per transaction.
● Max endpoint sizes:

– Full-speed:
● Bulk/Interrupt: 64
● Isoc: 1024

– High-Speed:
● Bulk: 512
● Interrupt: 3072
● Isoc: 1024 x3



  

Transactions

● Basic process of moving data to and from a 
device.

● USB is host-controlled. All transactions are 
initiated by the host.
● Much like everything else in USB

● A single transaction can move up to
the Endpoint Length of bytes

● The entire transaction happens
at the hardware level



  

Transactions

● Transactions have three phases
● Token Phase

– Host sends a token packet to the device
● Indicates start of transaction
● Indicates type of transaction (IN/OUT/SETUP)

● Data Phase
– Host or Device sends data

● Handshake Phase
– Device or host sends

acknowledgement (ACK/NAK/Stall)



  

Transactions

● Transactions are handled on the Hardware 
level.
● Strict timing is necessary
● Software will configure the hardware to

handle the transaction conditions before
they occur.
– This means the software/firmware

must be prepared for what is coming!
– not reacting to what has happened

● Hardware will NAK if not configured



  

Transactions

● Endpoints are typically implemented in a 
hardware peripheral
● Typically the USB hardware device is called

the Serial Interface Engine (SIE)
● SIE contains registers for each endpoint.

– Pointer to data buffer (and length)
➢ Firmware will configure these registers

for transactions which are expected
● SIE generates Interrupts

when transactions complete



  

Transactions

● Token Phase
● The host will initiate every transaction by sending a 

token. Tokens contain a token type and an 
endpoint number.

● The device SIE will handle receipt of
the token and will handle the data and
handshake phases automatically.
– This means the SIE endpoint will need

to be configured before the token
comes from the host.



  

Transactions

● For most cases, the token types are:
● IN

– The transaction will be an IN transaction,
where the device sends data to the host using
an IN endpoint.

– Data phase will be device-to-host (ie: in)
– Handshake phase (ack) will be

host-to-device



  

Transactions

● Token types (cont'd):
● OUT

– The transaction will be an OUT transaction,
where the host sends data to the device using
an OUT endpoint.

– Data phase will be host-to-device (ie: out)
– Handshake phase (ack) will be

device-to-host.



  

Transactions

● Token types (cont'd):
● SETUP

– The transaction will be an SETUP transaction
● SETUP transactions are used to start a

Control Transfer on a Control endpoint pair.
– Usually endpoint 0

● Setup transactions indicate there will be
more transactions following, and what types
they will be.

– A Setup transaction is like an OUT
transaction, and the data phase
contains a SETUP packet.



  

Transactions

● Data Phase
● The data phase contains the data which is to be 

transferred.
● The data phase packet can be from zero

bytes up to the endpoint length.
● For IN transactions, the data packet is

sent from the device to the host
● For OUT or SETUP transactions,

the data packet is sent from the
host to the device.



  

Transactions

● Data Phase (cont'd)
● If there is no data to be sent, or if the device is unable 

to receive, the device can send a NAK as its data 
stage.
– This ends the transaction prematurely.

● A NAK tells the host to try again later.
– It is not a failure of any kind.
– NAKs are a normal part of the flow

regulation of USB.
➢ The Host is often faster than the device!



  

Transaction

● IN Transaction

● The device can NAK as long as it's
not ready to send data.

● The Host will retry (up to a timeout)
as long as the device NAKs.



  

Transaction

● OUT Transaction

● The device can NAK as long as it's
not ready to receive data.

● The Host will retry (up to a timeout)
as long as the device NAKs.



  

Transactions

● The timing between the phases is very tight
● Too tight for software/firmware

● The hardware SIE handles this timing
● The hardware endpoint needs to be setup

before the IN token arrives.

● This means you must be ahead of
the host, in a manner of speaking.



  

Transactions

● For IN transactions (device-to-host)
● Device firmware will put data to send in the

hardware SIE buffer
● Host will (sometime later) send the IN token
● Device SIE will send the data (data stage)

– Device SIE will resend until ACK is received
● Host will send and ACK to the device

➢ Note that the data will not get sent
until the host initiates the transaction
by sending the IN token to the device



  

Transactions

● For OUT transactions (host-to-device)
● Device firmware configures a hardware SIE buffer 

to receive data
● Host will (sometime later) send the OUT

token
● Host will send the data.
● Device SIE will send an ACK
● Device SIE will interrupt the

MCU/CPU.



  

Transactions and Transfers

● Transaction
● Delivery of service to an endpoint
● Max data size: Endpoint length

● Transfer
● One or more transactions moving

information between host and device.
➢ Transfers can be large, even on

small endpoints!



  

Small Transfers

Transfer

Transaction

● The simplest transfer 
contains a single 
transaction.

● A transaction's size can 
be any length from zero 
bytes up to the
endpoint length.

Transfer

Transaction

Transfer



  

Large Transfers

Transfer

Transaction

Transaction

Transaction

Transaction

Transaction

● Transfers can contain 
more than one 
transaction.

● Transfers are ended by:
● A short transaction

OR
● When the desired 

amount of data has 
been transferred
➢ As requested

by the host



  

Large Transfers

● Transfers are ended when:
● A short transaction happens
● The requested amount of data has been

transfered 

● A short transaction is one which is
smaller than the endpoint length.
● This means in a multi-transaction

transfer, all transactions except the
last must be the endpoint length



  

Large Transfers

● Sometimes a host does not know the number 
of bytes it is asking for.
● For example a string descriptor.

● The host will ask for the maximum
number of bytes it can accept and will
rely on the device to end the
transfer early.

● This gives an interesting edge
case



  

Large Transfers

● There are four cases of large transfers. Let's 
consider IN transfers:
● Case 1:

– Host asks for a number of bytes which is
not a multiple of the endpoint length.

– device returns this many bytes.
● Case 2:

– Host asks for a multiple of the
endpoint length.

– device returns this many bytes.



  

Large Transfers

● Four cases (cont'd):
● Case 3:

– Host asks for a number of bytes
– device returns fewer than requested, which

is not a multiple of the endpoint length.
● Case 4:

– Host asks for a number of bytes
– device returns fewer than

requested, but it is a multiple of
the endpoint length



  

Large Transfers

● In cases #1, #2, and #3, the device can simply 
return the number of bytes it intends to return.



  

Large Transfers – Case 1

Transfer

Transaction

Transaction

Transaction

Transaction

Transaction

● Case 1:
● Host asks for a number of 

bytes which is not a multiple 
of the endpoint length.

● Device Returns this many 
bytes.

● Transfer is ended by:
● A short transaction

AND
● The desired amount of data 

has been transferred

● 16-byte endpoint length
● Requested 76 bytes
● 4x 16-byte transactions
● 1x 12-byte transaction



  

Large Transfers – Case 2

Transfer

Transaction

Transaction

Transaction

Transaction

● Case 2:
● Host asks for a number of 

bytes which is a multiple of 
the endpoint length.

● Device Returns this many 
bytes.

● Transfer is ended by:
● The requested amount of 

data has been transferred

● 16-byte endpoint length
● Requested 64 bytes
● 4x 16-byte transactions



  

Large Transfers – Case 3

Transfer

Transaction

Transaction

● Case 3:
● Host asks for a number of 

bytes.
● Device returns fewer than 

requested, which
is not a multiple of the 
endpoint length.

● Transfer is ended by:
● A short transaction

● 16-byte endpoint length
● Requested 255 bytes
● Device returns 44 bytes
● 2x 16-byte transactions
● 1x 12-byte transaction

Transaction



  

Large Transfers

● Case #4 is an edge case
– Host requested a number of bytes
– Device returns fewer than requested, which

is a multiple of the endpoint length.
● Since the number of bytes being

returned is a multiple of the endpoint
length, the transfer will not naturally
end with a short transaction.

● Device must add a zero-length
packet!
– A real hootenanny to keep track of...



  

Large Transfers – Case 4

Transfer

Transaction

Transaction

● Case 4:
● Host asks for a number of 

bytes.
● Device returns fewer than 

requested, which
is a multiple of the endpoint 
length.

● Transfer is ended by:
● A short transaction, in this 

case a zero-length packet

● 16-byte endpoint length
● Requested 255 bytes
● Device returns 32 bytes
● 2x 16-byte transactions
● 1x 0-byte transaction



  

Control Transfers

● The transfers discussed so far have been Bulk 
or Interrupt transfers.

● Control transfers are different and more 
complicated.
● Control transfers have additional

structure and are bi-directional.
● Information is sent both ways (IN and

OUT)



  

Control Transfers

● Control transfers begin with a SETUP 
transaction.
● A SETUP transaction is like an OUT transaction 

except that the data stage is an 8-byte
SETUP packet.
– The SETUP packet has information on:

● The logical recipient of the transfer
● The direction of the transfer
● The number of bytes which will be sent

or requested
● The identifier or type of the request



  

Control Transfers

● Chapter 9 of the USB specification defines 
standard requests which are used during 
enumeration of a device.
● Set Address
● Get Descriptor
● Get Configuration
● Set Configuration

others...



  

Control Transfers

● Device classes also define their own requests:
● CDC (Communication Device Class)

– Set Line Coding
– Set Control Line State
– Send Break

● HID (Human Interface Device)
– Get Report Descriptor
– Get Report
– Set Report



  

M-Stack



  

M-Stack

● M-Stack is a USB device stack for PIC 
microcontrollers by Signal 11 Software
● Free/Open Source

– Dual licensed Apache + GPL
● Implements:

– Vendor-defined devices
(ie: no device class)

– HID (Human Interface)
– CDC/ACM (Virtual serial port)
– MSC (Mass Storage)



  

M-Stack

● M-Stack supports a variety of PIC micros:
● 8-bit (PIC16, PIC18)
● 16-bit (PIC24)
● 32-bit (PIC32MX) (no MZ yet)

● Complexity of the SIE is hidden as
much as possible.
➢ It's impossible to abstract away

knowledge of USB

● www.signal11.us/oss/m-stack 



  

M-Stack

● M-Stack is configured statically through the 
usb_config.h file, which is part of every M-Stack 
application.

● This configuration header can:
– Enable endpoints for use
– Set endpoint lengths
– Configure ping-pong SIE modes
– Configure M-Stack to use interrupts
– Set callback functions for common

events



  

M-Stack

● M-Stack automatically creates and handles the 
buffers for each endpoint.
● MCU-specific constraints (allowed memory

regions and alignment) are handled
transparently.

● Ping-pong mode selection will
automatically cause the appropriate
number of buffers to be allocated.

● Application code is simple!

http://www.signal11.us/oss/m-stack


  

M-Stack

● Examples are provided for each device class 
which work on a range of PIC micros.

● Easiest way to get started is to copy
an example and modify it.

● Examples are under an unrestricted
license
➢ Intended to be used as a starting

point.



  

M-Stack

● The most basic example is the unit_test 
example.
● Provides a limited loopback interface on two

bulk endpoints.
● Acts as a source and sink on the

control endpoint.



  

Receive Data Exampleint main (void)
{
    /* Initialize M-Stack */
    usb_init();

    while (1) {
        /* Wait for data from the host on EP 1 OUT */
        if (usb_is_configured() && usb_out_endpoint_has_data(1)) {
            uint8_t len;
            const unsigned char *data;

            /* Data has been received from the host.
               Get a pointer to the data */
            len = usb_get_out_buffer(1, &data);
        
            /* Process the data in your application */
            my_process_data_function(data, len);

            /* Re-arm the endpoint. Don't touch *data after this */
            usb_arm_out_endpoint(1);
        }
    }
    return 0;
}



  

M-Stack API Functions

● void usb_init(void)
● Initialize the USB peripheral
● If attached, this will advertise to the host

that it is ready to be enumerated.
● Can be run when attached or detached.
● Typically run at the beginning of

execution when other hardware is
already initialized.



  

M-Stack API Functions

● bool usb_is_configured(void)
● Returns true if the USB device is configured.

➢ The host issues a Set Configuration
request as the last step of enumeration.

● This function will return false if the host
unconfigures the device. This is rare.



  

M-Stack API Functions

● bool usb_endpoint_has_data(uint8_t ep)

● Returns true if the OUT endpoint specified
has received any data.

● Remember that IN/OUT are from the host
perspective.



  

M-Stack API Functions

● int8_t usb_get_out_buffer(
           uint8_t ep,
           const unsigned char **buffer)

● Sets *buffer to point to the OUT buffer
for the endpoint specified.

● Returns the number of bytes actually
received.



  

M-Stack API Functions

● void usb_arm_out_endpoint(uint8_t ep)

● Return the endpoint buffer for the specified 
endpoint to SIE control, effectively setting it up
to receive the next transaction.

● Only call this once you are done with the
buffer returned by usb_get_out_buffer()



  

Send Data Exampleint main (void) {
    /* Initialize M-Stack */
    usb_init();

    while (1) {
        /* Make sure the endpoint is not busy! */
        if (usb_is_configured() && !usb_in_endpoint_busy(1)) {
            uint8_t len;
            unsigned char *data = usb_get_in_buffer(1);

            /* Get some data from your application. Assume this
               function populates data, which is the EP buffer. */
            my_populate_data_function(data, &len);

            /* Send the data that was put into
               the buffer (above) */
            usb_send_in_buffer(1, len);
        }
    }
    return 0;
}



  

M-Stack API Functions

● bool usb_in_endpoint_busy(uint8_t ep)

● Returns true if the specified endpoint has a free SIE 
buffer available for use.

● If the return is true, then it's safe to call 
usb_get_in_buffer() (to get a
pointer to the buffer) and write to it.



  

M-Stack API Functions

● unsigned char *get_in_buffer(uint8_t ep)

● Get a pointer to the specified endpoint's IN buffer.
● Only call this after you have called 
usb_in_endpoint_busy() on the same
endpoint (and it has returned false).

● After calling this function, data which
is to be sent to the host can be copied
to buffer.



  

M-Stack API Functions

● void *usb_send_in_buffer(
               uint8_t ep, size_t len)

● Send the data in the specified endpoint to the
host.

● Data should have already been copied
into the endpoint's buffer.



  

libusb



  

libusb

● libusb is a multi-platform host-side USB library
● Linux, BSD, OS X, Windows, others

● Runs in user space. No kernel
programming required.

● Easy to use synchronous API
● High-performance asynchronous API
● Supports all versions of USB
● http://libusb.info



  

libusb

● Unlike an M-Stack device, a libusb host runs on 
a general purpose multi-process OS.
● Sufficient permissions are required to open

a device
● Opening a device or interface may be

exclusive (only one process at a time).



  

libusb

● From a host perspective, the basic unit of a 
USB connection is the USB interface, not the
device.
● This is because devices can have multiple

interfaces, each of which may require a
different driver.

● Some composite devices may have
some standard interfaces (eg: CDC)
and also some vendor-defined
interfaces (eg: earlier example)

http://libusb.info/


  

libusb Exampleint main(int argc, char **argv)
{
        libusb_device_handle *handle;
        unsigned char buf[64];
        int length = 64, actual_length, i, res;

        /* Init libusb */
        if (libusb_init(NULL))
                return -1;

        /* Open the device. This is a shortcut function. */
        handle = libusb_open_device_with_vid_pid(
                                        NULL, 0xa0a0, 0x0001);
        if (!handle) {
                perror("libusb_open failed: ");
                return 1;
        }

        /* Claim the interface for this process */
        res = libusb_claim_interface(handle, 0);
        if (res < 0) {
                perror("claim interface");
                return 1;
        }



  

libusb Example (cont'd)
        /* Initialize the data */
        my_init_data_function(buf, length);

        /* Send some data to the device */
        res = libusb_bulk_transfer(
                   handle, 0x01, buf, length, &actual_length, 5000);
        if (res < 0) {
                fprintf(stderr, "bulk transfer (out): %s\n",
                                             libusb_error_name(res));
                return 1;
        }

        /* Receive data from the device */
        res = libusb_bulk_transfer(handle, 0x81, buf, length, 
                                                  &actual_length, 5000);
        if (res < 0) {
                fprintf(stderr, "bulk transfer (in): %s\n", 
                                                libusb_error_name(res));
                return 1;
        }

        /* Process the data */
        my_process_received_data_function(buf, &actual_length);

        return 0;
}



  

libusb

● Observations:
● libusb, and libusb_bulk_transfer() deal 

with transfers, not transactions.
– The length can be arbitrarily long and longer

than the endpoint length.
– If so, libusb will behave as expected, initiating 

transactions until the required amount of
data has been transferred.

– If the device returns a short packet, the
transfer will end, and actual_length
will indicate the actual amount of
data received.



  

libusb

● Observations (cont'd):
● The libusb_bulk_transfer() function is used 

for both IN and OUT transfers
– The endpoint address (which contains the

direction) is used to determine whether it's an
IN or OUT transfer.



  

libusb

● Observations (cont'd):
● The interface must be claimed before

it can be used.
– If another process, or a kernel driver, is using

this interface, it will kick the other driver off.
– This can be good or bad depending on your

point of view.



  

libusb

● Observations (cont'd):
● The libusb functions take a timeout parameter.

– This timeout is how long the device has to
complete the transfer.

– It can be any value the host desires
● The host is in charge of the bus!

– 5 seconds is good for general purposes,
but the author recently made one over
90 seconds!

● It all depends on the use case!



  

libusb

● The previous example was very easy to use, 
and may be good for many use cases.

● However, repeatedly sending transfers
using libusb's syncrhonous API is not
the best method in performance-critical
situations.

● Why is this?



  

Synchronous API Issues

● USB Bus
● After one transfer completes, nothing happens on 

the bus until the next libusb transfer function is 
called.

● One might think it's good enough to call
libusb_bulk_transfer() in a tight loop.
– Tight loops are not tight enough!

● For short transfers time spent in software
will be more than time spent in
hardware!

● All time spent in software is time a
transfer is not active!



  

Asynchronous API

● Fortunately libusb and the kernel provide an 
asynchronous API.
● Create multiple transfer objects
● Submit transfer objects to the kernel
● Receive a callback when transfers

complete

● When a transfer completes, there is
another (submitted) transfer
already queued.
● No downtime between transfers!



  

Asynchronous API Example
static struct libusb_transfer 
*create_transfer(libusb_device_handle *handle, size_t length) {
        struct libusb_transfer *transfer;
        unsigned char *buf;

        /* Set up the transfer object. */
        buf = malloc(length);
        transfer = libusb_alloc_transfer(0);
        libusb_fill_bulk_transfer(transfer,
                handle,
                0x81 /*ep*/,
                buf,
                length,
                read_callback,
                NULL/*cb data*/,
                5000/*timeout*/);

        return transfer;
}



  

Asynchronous API Example (cont'd)
static void read_callback(struct libusb_transfer *transfer)
{
        int res;
        
        if (transfer->status == LIBUSB_TRANSFER_COMPLETED) {
                /* Success! Handle data received */
        }
        else {
                printf("Error: %d\n", transfer->status);
        }

        /* Re-submit the transfer object. */
        res = libusb_submit_transfer(transfer);
        if (res != 0) {
                printf("submitting. error code: %d\n", res);
        }
}



  

Asynchronous API Example (cont'd)
        /* Create Transfers */
        for (i = 0; i < 32; i++) {
                struct libusb_transfer *transfer =
                        create_transfer(handle, buflen);
                libusb_submit_transfer(transfer);
        }

        /* Handle Events */
        while (1) {
                res = libusb_handle_events(usb_context);
                if (res < 0) {
                        printf("handle_events()error # %d\n",
                               res);

                        /* Break out of this loop only on fatal error.*/
                        if (res != LIBUSB_ERROR_BUSY &&
                            res != LIBUSB_ERROR_TIMEOUT &&
                            res != LIBUSB_ERROR_OVERFLOW &&
                            res != LIBUSB_ERROR_INTERRUPTED) {
                                break;
                        }
                }
        }



  

Asynchronous API

● This example creates and queues 32 
transfers.

● When a transfer completes, the completed 
transfer object is re-queued.

● All the transfers in the queue can
conceivably complete without a trip
to user space.



  

Asynchronous API

● For All types of Endpoint:
● The Host will not send any IN or

OUT tokens on the bus unless a
transfer object is active.

● The bus is idle otherwise
● Create and submit a transfer object

using the functions on the preceding
slides.



  

Performance

● For more information on USB performance, see 
my ELC 2014 presentation titled USB and the 
Real World
● http://www.signal11.us/oss/elc2014/ 

➢ Several devices and methods compared



  

Alan Ott
alan@softiron.com 
www.softiron.com

+1 407-222-6975 (GMT -5)
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