
Highlights of
R

Samuel Lurie

Disrupting
Proprietary
Software

What about
Python?

R Philosophy

R in Practice

Conclusion

Highlights of R
The Why, but not the How, of Using R

Samuel Lurie

Southern California Linux Expo 16x (2018)

({Sunday, March 11, 2018}$’1500-1600’)[[Room 104]]

Slide 1 of 23



Highlights of
R

Samuel Lurie

Disrupting
Proprietary
Software

What about
Python?

R Philosophy

R in Practice

Conclusion

Overview

1 Disrupting Proprietary Software

2 What about Python?

3 R Philosophy

4 R in Practice

5 Conclusion

Slide 2 of 23



Highlights of
R

Samuel Lurie

Disrupting
Proprietary
Software

What about
Python?

R Philosophy

R in Practice

Conclusion

R has made expensive proprietary statistical
software irrelevant.

R launched in 1993, Python in 1991 (both FOSS)

Before then, you had SAS (first release in 1972)

SAS is still around, but it’s $9720 and not needed any
more. (https://www.sas.com/store/products-solutions/cSoftware-p1.html?storeCode=SAS US)

Slide 3 of 23



Highlights of
R

Samuel Lurie

Disrupting
Proprietary
Software

What about
Python?

R Philosophy

R in Practice

Conclusion

Inertia

Why SAS?

Why do so many organizations use SAS? It’s clunky, difficult to
read, and feels so archiac compared to other languages like R
and Python.

Because we use SAS and that’s the way things are done.

Inertia. Dinosaurs at my firm who haven’t learned a new thing
in decades will stage a ... revolt if we stop paying an
arm-and-a-leg for that shouty, verbose, idiotic language.

–excerpts of a thread on the statistics subreddit
(tinyurl.com/whysas)

Slide 4 of 23



Highlights of
R

Samuel Lurie

Disrupting
Proprietary
Software

What about
Python?

R Philosophy

R in Practice

Conclusion

SAS tries to convince us of its continued
relevance...

...but just digs itself into a deeper hole.

I think [R] addresses a niche market ... but [w]e [at SAS] have
customers who build engines for aircraft. I am happy they are
not using freeware when I get on a jet.
—Anne H. Milley (SAS), 2009
(http://www.nytimes.com/2009/01/07/technology/business-computing/07program.html?pagewanted=all)

Slide 5 of 23



Highlights of
R

Samuel Lurie

Disrupting
Proprietary
Software

What about
Python?

R Philosophy

R in Practice

Conclusion

What about Python?

But we already have Python.

So why should we care about R?

Slide 6 of 23



Highlights of
R

Samuel Lurie

Disrupting
Proprietary
Software

What about
Python?

R Philosophy

R in Practice

Conclusion

In terms of functionality...

R and Python have been imitating each other for years.

They regularly port each other’s libraries. (e.g. ggplot2
and Pandas)

Jupyter notebooks now have support for R.

As data science languages, both are full-featured and
mature.

What you can do in one, you can generally do in the other.
The one glaring exception: web development capability

The question can no longer be answered
by appealing to functionality!

Slide 7 of 23



Highlights of
R

Samuel Lurie

Disrupting
Proprietary
Software

What about
Python?

R Philosophy

R in Practice

Conclusion

So why choose R over Python? (or vice versa)

design philosophy
Python:

performance > (freedom and flexibility)

R:

(freedom && flexibility) > performance

stylistic differences and nuances (later in this talk)

Base R is far more comprehensive than base Python.

At the end of the day:

”For 95% of programming problems, the best language is
the one that you’re best at.”
—Andrew Robinson (https://www.youtube.com/watch?v=ZIUcI OYbd8, 55min)

Slide 8 of 23



Highlights of
R

Samuel Lurie

Disrupting
Proprietary
Software

What about
Python?

R Philosophy

R in Practice

Conclusion

In R, operators are functions.

Trivial Examples

‘+‘(2,3) 7→ 5 (i.e. same as 2+3)

‘/‘(4,12) 7→ .3333 (i.e. same as 4/12)

Parentheses are a function.

A pair of parentheses is a call to the identity map function!

This is why using more parentheses slows down R code.

Braces are a function.

A pair of braces is a call to a function that returns the last
variable calculated.

This is why functions (delineated by braces) do not need
an explicit return statement.

Slide 9 of 23



Highlights of
R

Samuel Lurie

Disrupting
Proprietary
Software

What about
Python?

R Philosophy

R in Practice

Conclusion

A Black Sheep among Languages

R indexes from 1. (more on this soon)

usage among non-programmers and ”monolingual” R users

R has four different assignment operators. (more on this soon)

assignment into function calls??

e.g. c(”Length”, ”Width”) −> names(df1)

Slide 10 of 23



Highlights of
R

Samuel Lurie

Disrupting
Proprietary
Software

What about
Python?

R Philosophy

R in Practice

Conclusion

Indexing from 1

Old habits die hard.

surprisingly controversial

There are benefits to this approach. As an example, take x = 1:5

Negative Indices

> print(x)

1 2 3 4 5

> x = x[-3]

> print(x)

1 2 4 5

Indexing with Size Functions

> x[length(x)]

5

Slide 11 of 23



Highlights of
R

Samuel Lurie

Disrupting
Proprietary
Software

What about
Python?

R Philosophy

R in Practice

Conclusion

Four Different Assignment Operators

the operators, in order of decreasing precedence:

assign(’x’, 1.645) # optional envir arg for specific namespace

1.645 −> x (rightward assignment, also −>>)

x <− 1.645 (leftward assignment, also <<−)

x = 1.645

a couple amusing effects of R’s order of operations:

a = b <− 3

a = ((b <− 3) + 1) # Remember that operators are functions!

Slide 12 of 23



Highlights of
R

Samuel Lurie

Disrupting
Proprietary
Software

What about
Python?

R Philosophy

R in Practice

Conclusion

But R is Slow!

R has a reputation for slow execution.

This is not so much a fault of R, but rather the price paid
for implementing R’s philosophy.

The real problem lies in one big misconception about R
execution times—loops are slow!

Slide 13 of 23



Highlights of
R

Samuel Lurie

Disrupting
Proprietary
Software

What about
Python?

R Philosophy

R in Practice

Conclusion

List Comprehension (part 1 of 2)

The apply family of functions are syntactic sugar for applying a
function over all/selected elements of a variable.

They are apply, lapply, sapply, mapply, and tapply.

Each has its own usage.

sapply(1:100, function(x){2*sqrt(x)+1}) returns a numeric
vector of 2

√
1 + 1, 2

√
2 + 1, ... 2

√
100 + 1

lapply(list( c(1,2),c(3,4) ),sum)

[[1]]

[1] 3

[[2]]

[1] 7

tapply: a wrapper around lapply, used for blocking
mapply: multiple vectors inputted into a function

Slide 14 of 23



Highlights of
R

Samuel Lurie

Disrupting
Proprietary
Software

What about
Python?

R Philosophy

R in Practice

Conclusion

List Comprehension (part 2 of 2)

Recycling

Functions defined for one element can take multiple elements
anyway.

example: factorial()

factorial(1:6)

1 2 6 24 120 720

example: length mismatches

(1:6)/c(10,100,1000)

0.1 0.02 0.003 0.4 0.05 0.006

Slide 15 of 23



Highlights of
R

Samuel Lurie

Disrupting
Proprietary
Software

What about
Python?

R Philosophy

R in Practice

Conclusion

apply() vs. loops

The R community largely views loops as being slow and
advocates using the apply functions as a faster alternative.

This is misinformation! What slows down loops is when
you have memory allocations in each iteration!

apply may indeed be faster—but that’s simply because it
acts as a guard against programmers doing that.

Slide 16 of 23



Highlights of
R

Samuel Lurie

Disrupting
Proprietary
Software

What about
Python?

R Philosophy

R in Practice

Conclusion

apply() vs. loops: A Counterexample

loop
# .4 seconds

proc.time() -> exec_time

vec_a <- 1:1e6

vec_b <- vector(mode = "numeric", length = 0)

for(i in vec_a)

{

vec_b[[1 + length(vec_b)]] <- sqrt(i)

# notwithstanding a memory operation in each iteration!

}

exec_time <- proc.time() - exec_time

print(exec_time)

sapply()

# .7 seconds

proc.time() -> exec_time

vec_a <- 1:1e6

vec_b <- sapply(vec_a, sqrt)

exec_time <- proc.time() - exec_time

print(exec_time)

Slide 17 of 23



Highlights of
R

Samuel Lurie

Disrupting
Proprietary
Software

What about
Python?

R Philosophy

R in Practice

Conclusion

Parallelization

An upside of the apply() habit:

R programmers have been conditioning themselves to write
computations in embarrassingly parallel ways. Even before
parallel computing was in vogue!

Libraries for parallel computing (CPU) thus came to R very
naturally as parallelized wrappers for the apply() functions.

e.g. The parallel package has the mclapply() function,
which performs an lapply() in parallel.

It has an argument for specifying the number of cores to
use. This argument can even be set as detectCores()-1!

Similarly, R has libraries for GPU computing.

Slide 18 of 23



Highlights of
R

Samuel Lurie

Disrupting
Proprietary
Software

What about
Python?

R Philosophy

R in Practice

Conclusion

Landmarks in R beyond present scope

I would be remiss if I did not mention these in an R talk,
even though they are beyond our present scope.

ggplot2
shiny

Slide 19 of 23



Highlights of
R

Samuel Lurie

Disrupting
Proprietary
Software

What about
Python?

R Philosophy

R in Practice

Conclusion

But R isn’t Deployable!

R has long been criticized and belittled for its apparent
lack of deployability.

Until a few years ago, it was hard to refute this criticism.
But now... we have Docker!

Slide 20 of 23



Highlights of
R

Samuel Lurie

Disrupting
Proprietary
Software

What about
Python?

R Philosophy

R in Practice

Conclusion

my R::Shiny Dockerfile

FROM openanalytics/r-base

# "forked" from https://www.shinyproxy.io/deploying-apps/

RUN apt-get update && apt-get install -y \

sudo \

pandoc \

pandoc-citeproc \

libcurl4-gnutls-dev \

libcairo2-dev \

libxt-dev \

libssl-dev \

libssh2-1-dev \

libssl1.0.0

RUN R -e "install.packages( c( \"shiny\",\"rmarkdown\",\"tibble\",\"formattable\",

\"dplyr\",\"stringi\",\"knitr\",\"rvest\",\"XML\",\"pbapply\",\"ggplot2\",\"chron\",

\"lubridate\",\"DistributionUtils\",\"stringr\",\"reshape2\",\"grDevices\",

\"outliers\") , repos = \"http://cran.cnr.berkeley.edu/\", dependencies=TRUE)"

COPY app.R /etc

CMD ["R", "-e", "shiny::runApp(’/etc/app.R’, port = 8080, host = ’0.0.0.0’)"]

Slide 21 of 23



Highlights of
R

Samuel Lurie

Disrupting
Proprietary
Software

What about
Python?

R Philosophy

R in Practice

Conclusion

Being Resourceful

But R still doesn’t deploy well! You can’t compile a
stand-alone ”desktop” R script!

Yes, you can. If you’re resourceful. (I’ll tell you one way to
do it.)
Let that be the takeaway. The hacker spirit of R is why I
thought this talk is suitable for a GNU/Linux conference.

I hope you think so too.

Slide 22 of 23



Highlights of
R

Samuel Lurie

Disrupting
Proprietary
Software

What about
Python?

R Philosophy

R in Practice

Conclusion

The End

}

Slide 23 of 23


	Disrupting Proprietary Software
	What about Python?
	R Philosophy
	R in Practice
	Conclusion

