Samuel Lurie

Southern California Linux Expo 16x (2018)

({Sunday, March 11, 2018}$'1500-1600")[[Room 104]]

@ Disrupting Proprietary Software
© What about Python?

© R Philosophy

O R in Practice

© Conclusion

R has made expensive proprietary statistical
software irrelevant.

Highlights of
R

Samuel Lurie

Disrupting
Proprietary
Software

@ R launched in 1993, Python in 1991 (both FOSS)
@ Before then, you had SAS (first release in 1972)
@ SAS is still around, but it's $9720 and not needed any

IMOrE. (https://www.sas.com/store/products-solutions/cSoftware-pl.htm|?storeCode=SAS_US)

Slide 3 of 23

Highlights of
R

Samuel Lurie

Disrupting
Proprietary
Software

Slide 4 of 23

Inertia

Why SAS?

Why do so many organizations use SAS? It's clunky, difficult to
read, and feels so archiac compared to other languages like R
and Python.

Because we use SAS and that’s the way things are done.

Inertia. Dinosaurs at my firm who haven't learned a new thing
in decades will stage a ... revolt if we stop paying an
arm-and-a-leg for that shouty, verbose, idiotic language.

—excerpts of a thread on the statistics subreddit
(tinyurl.com /whysas)

SAS tries to convince us of its continued

relevance...

Highlights of
R

Samuel Lurie

Disrupting

Proprietary

software ...but just digs itself into a deeper hole.
| think [R] addresses a niche market ... but [w]e [at SAS] have
customers who build engines for aircraft. | am happy they are

not using freeware when | get on a jet.
—Anne H. Milley (SAS), 2009

(http://www.nytimes.com/2009/01/07 /technology/business-computing/07program.html|?pagewanted=all)

Slide 5 of 23

What about Python?

Highlights of
R

Samuel Lurie

What about

s But we already have Python.

So why should we care about R?

Slide 6 of 23

In terms of functionality...

Highlights of
R

samuelbuie R and Python have been imitating each other for years.

@ They regularly port each other’s libraries. (e.g. ggplot2
and Pandas)
What about

Python? @ Jupyter notebooks now have support for R.

@ As data science languages, both are full-featured and
mature.

@ What you can do in one, you can generally do in the other.
The one glaring exception: web development capability

The question can no longer be answered
by appealing to functionality!

Slide 7 of 23

Highlights of
R

Samuel Lurie

R Philosophy

Slide 8 of 23

So why choose R over Python? (or vice versa)

@ design philosophy
e Python:
o performance > (freedom and flexibility)
o R:
o (freedom && flexibility) > performance

e stylistic differences and nuances (later in this talk)
@ Base R is far more comprehensive than base Python.

@ At the end of the day:

e "For 95% of programming problems, the best language is
the one that you're best at.”
—Andrew Robinson (https://www.youtube.com/watch?v=Z1Ucl_OYbd8, 55min)

In R, operators are functions.

Highlights of

R - .
Trivial Examples

® '+'(2,3) > 5 (i.e. same as 2+3)
@ '/'(4,12) — .3333 (i.e. same as 4/12)

Samuel Lurie

Parentheses are a function.
F Fiiosephy @ A pair of parentheses is a call to the identity map function!

@ This is why using more parentheses slows down R code.

Braces are a function.

@ A pair of braces is a call to a function that returns the last
variable calculated.

@ This is why functions (delineated by braces) do not need
an explicit return statement.

Slide 9 of 23

Highlights of
R

Samuel Lurie

R Philosophy

Slide 10 of 23

A Black Sheep among Languages

R indexes from 1. (more on this soon)
usage among non-programmers and "monolingual” R users
R has four different assignment operators. (more on this soon)
assignment into function calls??

o e.g. c("Length”, "Width") —> names(df1)

Indexing from 1

Highlights of

R Old habits die hard.

Samuel Lurie

@ surprisingly controversial

@ There are benefits to this approach. As an example, take x = 1:5

Negative Indices
R Philosophy

v

print (x)
12345
> x = x[-3]
> print(x)
1245

Indexing with Size Functions

> x[length(x)]
5

Slide 11 of 23

Four Different Assignment Operators

Highlights of
R

Samuel Lurie
the operators, in order of decreasing precedence:
@ assign('x’, 1.645) # optional envir arg for specific namespace
@ 1.645 —> x (rightward assignment, also —>>)
R Philosophy @ x <— 1.645 (leftward assignment, also <<—)
@ x = 1.645

a couple amusing effects of R's order of operations:
@a=b<-3
@ a2 — ((b <— 3) aF 1) # Remember that operators are functions!

Slide 12 of 23

Highlights of
R

Samuel Lurie

R in Practice

Slide 13 of 23

But R is Slow!

@ R has a reputation for slow execution.

@ This is not so much a fault of R, but rather the price paid
for implementing R's philosophy.

@ The real problem lies in one big misconception about R
execution times—Iloops are slow!

Highlights of
R

Samuel Lurie

R in Practice

Slide 14 of 23

List Comprehension (part 1 of 2)

The apply family of functions are syntactic sugar for applying a
function over all/selected elements of a variable.

@ They are apply, lapply, sapply, mapply, and tapply.
@ Each has its own usage.

e sapply(1:100, function(x){2*sqrt(x)+1}) returns a numeric
vector of 2v1+1, 2241, ... 2v/100 + 1
e lapply(list(¢(1,2),c(3,4)) , sum)
[[111
(11 3
[[2]]
(11 7

e tapply: a wrapper around lapply, used for blocking
e mapply: multiple vectors inputted into a function

Highlights of
R

Samuel Lurie

R in Practice

Slide 15 of 23

List Comprehension (part 2 of 2)

Recycling
Functions defined for one element can take multiple elements
anyway.

example: factorial()

factorial(1:6)
1 2 6 24 120 720

example: length mismatches

(1:6)/c(10,100,1000)
0.1 0.02 0.003 0.4 0.05 0.006

apply() vs. loops

Highlights of
R

Samuel Lurie

@ The R community largely views loops as being slow and
advocates using the apply functions as a faster alternative.

o This is misinformation! What slows down loops is when
you have memory allocations in each iteration!
@ apply may indeed be faster—but that's simply because it
acts as a guard against programmers doing that.

R in Practice

Slide 16 of 23

Highlights of
R

Samuel Lurie

R in Practice

Slide 17 of 23

apply() vs. loops: A Counterexample

loop

.4 seconds
proc.time() -> exec_time
vec_a <- 1:1e6

vec_b <- vector(mode = "numeric", length = 0)
for(i in vec_a)
{

vec_b[[1 + length(vec_b)]] <- sqrt(i)

notwithstanding a memory operation in each iteration!
}
exec_time <- proc.time() - exec_time
print (exec_time)

sapply()

.7 seconds

proc.time() -> exec_time

vec_a <- 1:1e6

vec_b <- sapply(vec_a, sqrt)
exec_time <- proc.time() - exec_time
print (exec_time)

Parallelization

Highlights of
R

Samuel Lurie

@ An upside of the apply() habit:

o R programmers have been conditioning themselves to write
computations in embarrassingly parallel ways. Even before
parallel computing was in vogue!

@ Libraries for parallel computing (CPU) thus came to R very
R in Practice naturally as parallelized wrappers for the apply() functions.

e e.g. The parallel package has the mclapply() function,
which performs an lapply() in parallel.

@ It has an argument for specifying the number of cores to
use. This argument can even be set as detectCores()-1!

@ Similarly, R has libraries for GPU computing.

Slide 18 of 23

o | would be remiss if | did not mention these in an R talk,
even though they are beyond our present scope.
o ggplot2
o shiny

@ R has long been criticized and belittled for its apparent
lack of deployability.
e Until a few years ago, it was hard to refute this criticism.
e But now... we have Docker!

my R::Shiny Dockerfile

Highlights of
R

Samuel Lurie FROM openanalytics/r-base

"forked" from https://www.shinyproxy.io/deploying-apps/

RUN apt-get update && apt-get install -y \
sudo \
pandoc \
pandoc-citeproc \
libcurl4-gnutls-dev \
libcairo2-dev \
libxt-dev \
libssl-dev \
libssh2-1-dev \
1libssl1.0.0

R in Practice

RUN R -e "install.packages(c(\"shiny\",\"rmarkdown\",\"tibble\",\"formattable\",
\"dplyr\",\"stringi\",\"knitr\",\"rvest\",\"XML\",\"pbapply\",\"ggplot2\",\"chron\"
\"lubridate\",\"DistributionUtils\",\"stringr\",\"reshape2\",\"grDevices\",
\"outliers\") , repos = \"http://cran.cnr.berkeley.edu/\", dependencies=TRUE)"
COPY app.R /etc

CMD ["R", "-e", "shiny::runApp(’/etc/app.R’, port = 8080, host = ’0.0.0.0’)"]

Slide 21 of 23

Being Resourceful

Highlights of
R

Samuel Lurie

o But R still doesn’t deploy well! You can't compile a
stand-alone " desktop” R script!
e Yes, you can. If you're resourceful. (I'll tell you one way to
do it.)
o Let that be the takeaway. The hacker spirit of R is why |
thought this talk is suitable for a GNU/Linux conference.
@ | hope you think so too.

Conclusion

Slide 22 of 23

	Disrupting Proprietary Software
	What about Python?
	R Philosophy
	R in Practice
	Conclusion

