
Packer
Easily build machines images for multiple platforms with
the same configuration

http://packer.io

Lance Albertson - @ramereth - lance@osuosl.org

Oregon State University Open Source Lab

About me

Lance Albertson

Director, OSU Open Source Lab (OSUOSL)

Provide infrastructure hosting for FOSS projects

Linux Foundation, Python Software Foundation, Drupal,
etc

Ops guy

http://osuosl.org

So what is Packer?
Machine image building tool created by Mitchell
Hashimoto (of Vagrant fame)

Written in Go

Makes your life easier

Supported Platforms
Amazon EC2 Digital Ocean
Docker GCE
Openstack Parallels
QEMU (kvm) Virtual Box
VMWare

What problem does Packer
solve?

One image building tool to rule them all

Single configuration to create images across multiple
platforms

Cloud? Vagrant? Docker? -- YES!

Integrates into the cloud/devops model well

Terminology
Templates: JSON files containing the build information
Builders: Platform specific building configuration
Provisioners: Tools that install software after the initial OS

install
Post-processors:

Actions to happen after the image has been
built

Packer Build Steps
This varies depending on which builder you use. The
following is an example for the QEMU builder

Download ISO image1.

Create virtual machine2.

Boot virtual machine from the CD3.

Using VNC, type in commands in the installer to start an
automated install via kickstart/preseed/etc

4.

Packer automatically serves kickstart/preseed file with a
built-in http server

5.

Packer Build Steps
Packer waits for ssh to become available6.

OS installer runs and then reboots7.

Packer connects via ssh to VM and runs provisioner (if
set)

8.

Packer Shuts down VM and then runs the post
processor (if set)

9.

PROFIT!10.

Variables in Packer
Variables allow you to set API keys and other variable
settings without changing the configuration file:

{
 "variables": {
 "aws_access_key": "",
 "aws_secret_key": ""
 },

 "builders": [{
 "type": "amazon-ebs",
 "access_key": "{{user `aws_access_key`}}",
 "secret_key": "{{user `aws_secret_key`}}",
 }]
}

Environment Variables
You can also use variables to set environment variables
within the packer environment that can be used by
provisioners.

{
 "variables": {
 "my_secret": "{{env `MY_SECRET`}}",
 },
}

Setting variables
You can set variables either via the CLI or importing them
from a json file:

Via CLI
$ packer build \
 -var 'aws_access_key=foo' \
 -var 'aws_secret_key=bar' \
 template.json

Via json file
$ packer build -var-file=variables.json template.json

This makes it easy for you to adapt your automated builds
as you need fit.

How it works
Packer template file for QEMU:

{
 "builders": [
 {
 "boot_command": [
 "<tab> text ks=http://{{ .HTTPIP }}:{{ .HTTPPort }}/centos-7.0/ks-openstack.cfg",
 "<enter><wait>"
],
 "accelerator": "kvm",
 "boot_wait": "10s",
 "disk_size": 2048,
 "headless": true,
 "http_directory": "http",
 "iso_checksum": "df6dfdd25ebf443ca3375188d0b4b7f92f4153dc910b17bccc886bd54a7b7c86",
 "iso_checksum_type": "sha256",
 "iso_url": "{{user `mirror`}}/7.0.1406/isos/x86_64/CentOS-7.0-1406-x86_64-NetInstall.iso",
 "output_directory": "packer-centos-7.0-x86_64-openstack",
 "qemuargs": [["-m", "1024m"]],
 "qemu_binary": "qemu-kvm",
 "shutdown_command": "echo 'centos'\|sudo -S /sbin/halt -h -p",
 "ssh_password": "centos",
 "ssh_port": 22,
 "ssh_username": "centos",
 "ssh_wait_timeout": "10000s",
 "type": "qemu",
 "vm_name": "packer-centos-7.0-x86_64"
 }],

How it works
Continued...
{
 "provisioners": [
 {
 "environment_vars": [
 "CHEF_VERSION={{user `chef_version`}}"
],
 "execute_command": "echo 'centos' | {{.Vars}} sudo -S -E bash '{{.Path}}'",
 "scripts": [
 "scripts/centos/osuosl.sh",
 "scripts/centos/fix-slow-dns.sh",
 "scripts/common/sshd.sh",
 "scripts/common/vmtools.sh",
 "scripts/common/chef.sh",
 "scripts/centos/openstack.sh",
 "scripts/centos/cleanup.sh",
 "scripts/common/minimize.sh"
],
 "type": "shell"
 }
],
 "variables": {
 "chef_version": "provisionerless",
 "mirror": "http://centos.osuosl.org"
 }
}

Building the Image
$ packer build centos-7.0-x86_64-openstack.json
qemu output will be in this color.

==> qemu: Downloading or copying ISO
 qemu: Downloading or copying: http://centos.osuosl.org/7.0.1406/isos/x86_64/CentOS-7.0-1406-x86_64-NetIns
==> qemu: Creating hard drive...
==> qemu: Starting HTTP server on port 8081
==> qemu: Found port for SSH: 3213.
==> qemu: Looking for available port between 5900 and 6000
==> qemu: Found available VNC port: 5947
==> qemu: Starting VM, booting from CD-ROM
 qemu: WARNING: The VM will be started in headless mode, as configured.
 qemu: In headless mode, errors during the boot sequence or OS setup
 qemu: won't be easily visible. Use at your own discretion.
==> qemu: Overriding defaults Qemu arguments with QemuArgs...
==> qemu: Waiting 10s for boot...
==> qemu: Connecting to VM via VNC
==> qemu: Typing the boot command over VNC...
==> qemu: Waiting for SSH to become available...

Using the command line
Build an image from a template
$ packer build template.json

Inspect at template to see its configuration
$ packer inspect template.json
Optional variables and their defaults:

 chef_version = provisionerless
 mirror = http://centos.osuosl.org

Builders:

 qemu

Provisioners:

 shell

Validate proper json and packer configuration
$ packer validate template.json
Template validated successfully.

Machine readable output
Most commands allow readable output for scripts:

$ packer inspect -machine-readable template.json
1424621191,,ui,say,Optional variables and their defaults:\n
1424621191,,template-variable,chef_version,provisionerless,0
1424621191,,ui,say, chef_version = provisionerless
1424621191,,template-variable,mirror,http://centos.osuosl.org,0
1424621191,,ui,say, mirror = http://centos.osuosl.org
1424621191,,ui,say,
1424621191,,ui,say,Builders:\n
1424621191,,template-builder,qemu,qemu
1424621191,,ui,say, qemu
1424621191,,ui,say,
1424621191,,ui,say,Provisioners:\n
1424621191,,template-provisioner,shell
1424621191,,ui,say, shell

Builders

Responsible for creating and build the machines.

QEMU, Virtual Box, EC2, etc

Builder definition maps to exactly one build

You can have multiple builder definitions using the same
builder

You must have a unique name for each build definition

Amazon EC2 Digital Ocean
Docker GCE
Openstack Parallels
QEMU (kvm) Virtual Box
VMWare

Amazon AMI Builder
amazon-ebs

Create EBS-backed AMIs by launching a source AMI and
re-packaging it into a new AMI after provisioning.

amazon-instance
Create instance-store AMIs by launching and provisioning
a source instance, then rebundling it and uploading it to
S3

amazon-chroot
Create EBS-backed AMIs from an existing EC2 instance by
mounting the root device and using a Chroot
environment to provision that device.

Docker Builder

Builds docker images without the use of a Dockerfile

Able to provision containers with portable scripts that
aren't tied to Docker itself

Allows you to use tools such as Chef, Ansible, etc to build
the container

Must be run on a machine that already has docker
installed

Provisioners

Shell Run either inline or shell scripts
File Uploads Upload files and use shell scripts to

move files around as needed
Ansible Provision using playbook and role

files
Chef Client Connect to a chef server and run

chef
Chef Solo Run a Chef solo run by pointing to

local cookbooks or uploading them
Puppet Masterless Run local manifests and modules
Puppet Server Connect to a puppet server and run

puppet
Salt Using Salt states, deploy a vm using

Salt

Post-processors

compress Compress VMWare or Virtualbox image
using gzip

docker-import Imports the docker image locally
docker-push Push image to the docker repository
docker-save Saves docker image directly to a file
docker-tag Tags a build in the docker repository
Vagrant Converts artifact into a valid Vagrant box

file
Vagrant Cloud Pushes artifact to Vagrant Cloud
vSphere Uploads artifact to a vSphere endpoint

Extending Packer

You can extend packer using its plugin system

All builders, provisioners and post-processors are plugins
themselves

Check out their documentation: https://packer.io
/docs/extend/developing-plugins.html

Other useful Packer tools

Bento
https://github.com/chef/bento

Chef's Packer template and script repository for building
their vagrant boxes

Covers most platforms you care about

Figured out the hard stuff for you!

Great place to see how to see Packer examples

Checkout our fork: https://github.com/osuosl/bento/

QEMU Openstack builders for Ubuntu/Debian,
CentOS/Fedora

Demo time!

Questions?
http://packer.io

Lance Albertson - @ramereth - lance@osuosl.org

Oregon State University Open Source Lab

http://osuosl.org

