
Introduction to SoC+FPGA

Marek Vašut <marek.vasut@gmail.com>

March 3, 2017

Marek Vasut

I Software engineer at DENX S.E. since 2011

I Versatile Linux kernel hacker

I Custodian at U-Boot bootloader

I Yocto (oe-core) contributor

I FPGA enthusiast

Structure of the talk

I What is SoC, FPGA and SoC+FPGA ?

I Available solutions, small and big

I Small bare-metal or RTOS solutions

I Big solutions with U-Boot and Linux

I FPGA manager and DTOs

I Conclusion

SoC? FPGA? SoC+FPGA?

SoC:

I System on Chip

I CPU core + peripherals

FPGA:

I Field-Programmable Gate Array

I Programmable logic device

SoC+FPGA:

I SoC and FPGA on a single chip

I Connected through on-chip bus

FPGA

I Field Programmable Gate Array

I High-Speed Programmable logic

I Plenty of I/O options

I Extremely parallel architecture
I Usually used for:

I Digital Signal Processing (DSP)
I Parallel data processing
I Custom hardware interfaces
I ASIC prototyping
I . . .

I Common vendors – Xilinx, Altera, Lattice, Microsemi. . .

Internal structure

BLUE Global interconnect
GREEN Local interconnect
RED Logic element

Why SoC+FPGA?

I Cost ?

I Need for special bus interface for a CPU

I Need for obscure (amount of) I/O

I Need for extra CPU power for your FPGA

What’s available?

A lot !

I Cypress PSoC: 8051/CortexM0/M3 , Flash+SRAM

I Microsemi SF2: CortexM3 , Flash+SRAM+DRAM

I Altera SoCFPGA: CortexA9 SoC + FPGA

I Xilinx Zynq: CortexA9/A53 SoC + FPGA

Cypress PSoC

I Originally 8051 + Analog programmable fabric

I Since PSoC4, ARM Cortex M0 + Optional digital blocks

I Since PSoC5, ARM Cortex M3

I All PSoCs are flash-based , so non-volatile

I Targets deeply embedded systems, like smoke detectors

I Kit is $10 with easily accessible pins and programmer

This is awesome! But ...

Cypress PSoC getting started

I PSoC Creator is Windows only (or Wine) :-(

I GreenPAK project is working on fixing this :-)

I Installation is annoying, but doable

I Lot of examples in the design tool :-)

I Most of them don’t target cheap kits :-(

I Programable logic design is done via schematic entry

I Click compile - program - done ...

Cypress PSoC Creator

Cypress PSoC software

I PSoC creator has bare-metal code templates

I Each PL component has register interface

I PSoC creator generates templates for PL components

I There are even convenience functions !

I Or export the PL init blob and include it in RTOS

I FreeRTOS and uC/OS2 BSPs are available

Microsemi SmartFusion 2

I Has roots in Actel offerings

I CortexM3 with MPU, Flash/SRAM/DDR DRAM

I Arrow SF2PLUS kit is $125 with programmer

I Usual RTOS offerings – FreeRTOS, uC/OS-III, Keil RTX

I Capable of running Linux *

* uClinux with prehistoric kernel

Microsemi SF2 getting started

It’s easy ... no, not really ...

I Register at Microsemi website

I Download Libero SoC design software 11.7

I Download separate service pack 3

I Download license server daemons

I Install the first two (howto kinda works ...)

I Install asortment of 32bit libs

I Unpack the daemons

I Obtain evaluation license from Microsemi

I See next slide for how to launch this monster

Microsemi SF2 getting started

1 export LD_LIBRARY_PATH=/lib/i386-linux-gnu/:/usr/lib/i386-linux-gnu/

2 export LIBERO_INSTALLED_DIR=/work/MicroSemi/Libero_v11.7/

3 export PATH=$PATH:$LIBERO_INSTALLED_DIR/Libero/bin/

4 export PATH=$PATH:$LIBERO_INSTALLED_DIR/Synplify/bin/

5 export PATH=$PATH:$LIBERO_INSTALLED_DIR/Model/modeltech/linuxacoem/

6 export PATH=$PATH:$LIBERO_INSTALLED_DIR/../Linux_Licensing_Daemon/

7 export LM_LICENSE_FILE=1702@localhost

8 export SNPSLMD_LICENSE_FILE=1702@localhost

9 cd /work/MicroSemi/Libero_v11.7/Libero

10 /work/MicroSemi/Linux_Licensing_Daemon/lmgrd \

11 -c /work/MicroSemi/License.dat \

12 -l /tmp/microsemi-lmgrd.log

13 libero

14 killall lmgrd actlmgrd

Altera SoCFPGA

I ARM Cortex A9 UP/SMP

I SPI NOR/NAND/SD storage, DDR2/3 DRAM

I Standard peripherals (I2C, SPI, CAN, USB . . .)

I Upcoming Stratix 10 is ARMv8 Cortex A53

I Usually runs U-Boot, Linux

I RTOS offerings exist, uC/OS, FreeRTOS

I Capable of running in AMP configuration

Altera SoCFPGA design software

I Altera Quartus , now intelFPGA

I Proprietary, but runs fine on Linux

I Project Typhoon

Altera SoCFPGA bootloader

U-Boot or MPL:
I U-Boot

I Altera
I 2013.01.01
I Ancient, buggy, obtuse

I Mainline
I 2017.xx
I Actively maintained
I Altera is contributing
I Used in production (use it)

I MPL
I BSD-licensed bootloader
I Bugs fixed in U-Boot not fixed here
I Very rudimentary (init hw, start blob)

Altera SoCFPGA Linux support

I Vendorkernel
I Reasonably recent 4.x
I Altera is trying to keep it in sync with Linus
I Still a lot of questionable patches

I Mainline
I HPS peripherals supported out of the box
I FPGA part needs a few patches from ML

I DT overlay support
I FPGA manager support
I DT overlay support for FPGA manager

Xilinx Zynq

I ARM Cortex A9 or Cortex A53 (ZynqMP)

I SPI NOR/NAND/SD storage, DDR2/3 DRAM

I Standard peripherals (I2C, SPI, CAN, USB . . .)

I ZynqMP has a lot of multimedia stuff

I ZynqMP has GPU, but it’s ARM Mali :-(

I Usually runs U-Boot, Linux

I RTOS offerings exist, uC/OS, FreeRTOS

Xilinx Zynq design software

I Xilinx Vivado

I Proprietary, but runs fine on Linux

I FOSS solution is in the works :-)

Xilinx Zynq bootloader

I U-Boot
I Mainline U-Boot works, with limitations on ZynqMP
I ZynqMP ATF loading is in progress
I Xilinx is active at contributing

I FSBL + U-Boot
I Xilinx’s preloader with extended capabilities
I Sets up the hardware, loads blobs, starts U-Boot
I In this setup, U-Boot runs without SPL
I This configuration is thus far needed on ZynqMP

Xilinx Zynq Linux support

I Vendorkernel
I Reasonably recent 4.x
I Xilinx is trying to keep it in sync with Linus
I Version is usually picked based on Xilinx release cycle
I Some questionable patches in the tree

I Mainline
I PS peripherals supported out of the box
I FPGA part needs patches from ML for Zynq
I ZynqMP support is work in progress

U-Boot on SoCFPGA and Zynq

Altera SoCFPGA

I In Quartus, build project and generate handoff files

I Use qts-filter.sh in mainline U-Boot to process them

I Build mainline U-Boot to obtain u-boot-with-spl.sfp

I Install u-boot-with-spl.sfp to partition 0xa2 on SD card

I Install u-boot-with-spl.sfp to offset 0x0 on QSPI NOR

I Use fpga command to load FPGA RBF bitstream

Xilinx Zynq

I In Vivado, build project and generate HDF file

I Unzip HDF file to obtain ps* init*.c and ps* init*.h

I Copy the ps* init* files to U-Boot source, build U-Boot

I Install BOOT.BIN to FAT partition on SD card

I Use fpga command to load FPGA BIT bitstream

Vendorkernel FPGA loading horror

I SoCFPGA: cat bitstream.rbf > /dev/fpga

I Zynq: cat bitstream.rbf > /dev/xdevcfg

I Enable bridges

I Access hardware via devmem and hope it works

I Bind drivers and enjoy how things work . . .

But what if someone reprograms the FPGA while the driver uses
it?

I Too bad, GAME OVER

I System hangs or misbehaves

Linux with DTOs

DTO - Device Tree Overlays

I Dynamic device tree

I Kernel can load DT fragments at runtime

I The ”live” DT is patched by these fragments

I Fragments can be loaded via ie. configfs

I Drivers are bound based on the DT content

Linux DTO demo

1 overlaydir=/sys/kernel/config/device-tree/overlays/mydto

2 inputdts=/usr/share/dto/overlay.dts

3

4 # Compile and load DTO

5 mkdir $overlaydir

6 dtc -@ -I dts -O dtb $inputdts > $overlaydir/dtbo

7 # ^^ this option indicates we're compiling DT fragment

8

9 #

10 # Do your stuff here

11 #

12

13 # Unload DTO

14 rmdir $overlaydir

DTO source

1 /dts-v1/;

2 /plugin/;

3 / {

4 #address-cells = <1>;

5 #size-cells = <0>;

6 fragment@0 {

7 reg = <0>;

8 target-path = "/soc/ethernet@ff700000";

9 __overlay__ {

10 #address-cells = <1>;

11 #size-cells = <0>;

12
13 status = "okay";

14 phy-mode = "rgmii";

15 };

16 };

17
18 fragment@1 {

19 reg = <1>;

20 target-path = "/soc/i2c@ffc04000/i2cswitch@70/i2c@1";

21 __overlay__ {

22 #address-cells = <1>;

23 #size-cells = <0>;

24 eeprom@51 {

25 compatible = "at,24c01";

26 pagesize = <8>;

27 reg = <0x51>;

28 };

29 };

30 };

31 };

Linux FPGA manager

I Responsible for handling the FPGA part of the SoC

I Loads the FPGA bitstream

I Manages the bridges between SoC and FPGA

I Uses Linux firmware facility to obtain bitstream from FS

I Well integrated into Linux DM, unlike vendorkernel stuff

I Supports Altera SoCFPGA, Xilinx Zynq and Lattice iCE40
(more are coming)

I Supports partial reconfiguration too (here be dragons)

FPGA manager with DTOs

How it works:

I Describe FPGA content in DTO

I DTO must also point to a matching bitstream

I Load DTO into the kernel

I Kernel programs the FPGA (using FPGA manager)

I Kernel enables bridges (using FPGA manager)

I Kernel binds drivers based on the DTO content

I User is happy!

DTO can be removed:

I Kernel unbinds drivers

I Kernel disables bridges (using FPGA manager)

I FPGA remains programmed and running

FPGA manager DTO

1 /dts-v1/;

2 /plugin/;

3 / {

4 #address-cells = <1>;

5 #size-cells = <0>;

6 fragment@0 {

7 reg = <0>;

8 /* controlling bridge */

9 target-path = "/soc/fpgamgr@ff706000/bridge@0";

10 __overlay__ {

11 #address-cells = <1>;

12 #size-cells = <1>;

13 area@0 {

14 compatible = "fpga-area";

15 #address-cells = <2>;

16 #size-cells = <1>;

17 /* We use one bridge, so one range */

18 ranges = <0 0x00000000 0xff200000 0x00080000>;

19
20 firmware-name = "fpga/default/output_file.rbf";

21
22 a_16550_uart_0: serial@01000 {

23 compatible = "altr,16550-FIFO128", "ns16550a";

24 reg = <0 0x001000 0x00000200>;

25 interrupt-parent = <&intc>;

26 interrupts = <0 40 0>;

27 clock-frequency = <32000000>;

28 fifo-size = <128>;

29 reg-io-width = <4>;

30 reg-shift = <2>;

31 };

Conclusion

I All sorts of PL devices available

I Using SoC with FPGA in Linux today is becoming easy

I FPGA manager is great (already) !

The End

Thank you for your attention!
Contact: Marek Vasut <marek.vasut@gmail.com>

