
Containerized Storage for Containers

@JeffryMolanus
@openEBS

https://openebs.io

mountpoint.io - 2018

https://openebs.io
http://mountpoint.io

Latest (storage IO) patterns for
cloud-native applications in a k8s

environment

People

Software
&

Hardware

Applications have changed;
&

somebody forgot to tell storage

• Cloud native apps that are distributed systems themselves
• Let us use Paxos, RAFT, nobody flinches

• They want it to scale by default — batteries included
– HaProxy, Envoy — no more storage scaling

• Apps are designed to fail across DC’s, regions and providers
• Should be multi-cloud, multi-hypervisor and multi-platform

• Databases provide distributed scale out; or one can use
vitess for existing SQL (no-noSQL) databases

• Datasets of individual containers are relatively small
• The sum of the parts is greater then the whole

Cloud native software architecture

Data availability and
performance is not (anymore)
exclusively controlled at the

storage layer

• Deliver fast and frequently
• A deployment per day keeps the ….. away

• Small teams with specific goals. Shadow IT is where the
innovation happens — born in the cloud

• CI/CD pipelines — blue-green or cannery deployment
• Make install has been upgraded to make push

• Software delivery has changed, tarball on steroids
• Declarative intent, gitOps, chatOps
• K8s as the unified cross cloud control plane (control loop)

• Everything in containers either bare metal or lkvm

DevOps (the people)

• Storage appliance peculiarities bubble up in apps
• Don't do this because… don't do that because….
• Makes it hard to write code that uses the full stack optimal

when moving from c2c, private or public
• Some vendors — simply put their appliances in the cloud

• Friction; “Do not run your CI while I do backups!”
• You need LU’s again? Gave you 100 yesterday!

• “We simply use DAS as nothing is faster than that”
• NVMe and PDIMs enforce a change in the way we do things

• Increasing core counts create new challenges
• caches, migrations, NUMA and yes — not fully utilised cores

HW / Storage trends

HW / Storage trends

HW / Storage trends

What if storage for container
native applications was itself

container native?

• Not yet another distributed storage system; small is the new big
• Cloud native (not washed) applications are, inherently

distributed applications
• One on top of the other, an operational nightmare?

• Per workload storage system, using declarative intent defined
by the developer
• Applications defined storage

• Reduce blast radius and no IO blender
• Runs in containers for containers — in user space
• Not a clustered storage instance rather a cluster of storage

instances

Design constraints

Containers & k8s

Manifests express
intent

stateless

Container 1 Container 2 Container 3

Container 1 Container 2 Container 3

Container 1 Container 2 Container 3

stateful

Data Container Data Container Data Container

Any Server, Any Cloud Any Server, Any Cloud

Solution

1. Small working sets
2. Ephemeral
3. Scale by N
4. Mobile workloads
5. DevOps responsible

for operations
6. Cloud lock-in
7. Per workload

optimisation

1. Keep data local
2. Controller in POD
3. N more containers
4. Follow the workload
5. Just another micro

service
6. Workload migration
7. Declarative intent

Challenge

High level CAS architecture

Using the k8s substrate

• Betting on k8s; don't integrate with plugins actually build on-top of it
• CSI plugin standardised API to communicate with external storage

(controller and agent)
• Implement dynamic provisioner to construct “volumes” (openEBS operator)
• Using the operator framework to construct storage topology and reflect

storage systems state (kubectl describe)
• watchers and CRDs to invoke logic to reconcile desired state

• Again, using the operator framework to discover local devices and their
properties to create storage pools dynamically (NDM)

• Fully operated by kubectl i.e no external tools required (*)
• Visualise topology and EE testing (Litmus)

k8s control plane for storage

Patterns; sidecars & meshes

• A CAS volume consists out of controller
and a replica and lives somewhere

• The fallacies of distributed computing
(L. Peter Deutsch)
• The only constant is change

• How do we dynamic (re) configure?
• Optimal transport/path
• Rescheduling
• Different (virtual) machines

• Data mesh for dynamic IO
reconfiguration

K8s pattern; service mesh

Kasun Indrasiri

https://medium.com/@kasunindrasiri?source=post_header_lockup

Data mesh negotiated transport

kind: DataFrabricConnection
apiVersion: V1
metadata:
 labels:
 - ….
spec:
 name: my-iospec
 ioChannel: my-first-channel
 request:
 type: block
 - nvmeof
 - nbd
 - iscsi
 -
 properties:
 compress: false
 encrypt : true

• Controller and replica need to find
optimal path — but also the app to
the controller

• Virtual “HBA” uses negotiated
transport and features (VHCI)
• Capable of using different

transport types
• Connection types and state reflected

in custom resources
• kubectl edit or update -f xyz.yaml

• Opportunity to innovate for
application optimised IO patterns:
smart endpoints dumb pipes

Storage just fades away as a concern

Implementation details

• JIVA, the primordial soup to determine feasibility
• Praised for its ease of use by users

• Instrumental to use to find and explore uses case for the
cloud native landscape

• Does not provide efficient “enterprise” storage features
• Swapping out JIVA with something else is just a matter of

adding storage classes so we are evolving (pluggable)
• Yay for the micro service approach

• The biggest problem to solve however is user space IO
• Different kernels on different clouds — tainting

• Performance in public cloud not yet the biggest concern

Input output container (IOC)

• If containers perform (mostly) API request to one and
other, why not have them do storage IO to each other?

• Select devices (NDM) and claim resources in the pod spec
• DSM can handle this automatically as well

• IOC DaemonSet grabs the devices and exposes them
through a variety of different protocols

• Leveraging Storage Plane Development Kit
• There are other things available like UNVMe however

• Bypass the kernel using UIO/VFIO and DMA straight into the
devices by leveraging huge pages (Poll Mode Drivers)

 IOC overview

PVPV

IOC
(DS)

Target

Replica

Target

Replica

DMS

openEBS services

SC

Reusing virtio for containers

• Widely used and actively developed protocol which uses
shared memory to interact with several types of hardware

• In the case of openEBS — interested in user space virtio-
{blk,nvme} initiator

• Primary reason for developing this was to have a loosely
coupling with SPDK which use Poll Mode Drivers (PMD)
• Perhaps also LIO’s vhost support

• Even-though we have plenty of cores — having anything
and everything attached to openEBS do polling is not
acceptable

• There was no “libvirtio” unfortunately, so we created one

Feasibility test

• SPDK in full polling mode using the
SPDK provided plugin

• Virtio plugin using SHM, to issue IO
to SPDKs

• Experiment expectations:
• Due to non polling mode

performance will drop
• Due to eventfd() performance

will drop (context switches)
• Desired result: ~kernel

• Quid pro quo

SPDK

FIO

Virtio

FIO

SPDK

Kick

Results of the first test

SPDK

Kernel

openEBS

0 125 250 375 500

490

IOPS(K)

Results using adaptive polling

SPDK

Kernel

openEBS

0 125 250 375 500

490
Maximum

IOPS(K)

100ms

10ms

5ms

350 400 450 500

484
Maximum

Sleep time

Initial observation

• SPDK can indeed out perform the kernel
• Using it however has some ramifications but is IO processing

in user space becoming a new trend?
• Using virtio as a user space library to do block IO is feasible
• Using eventfd() to kick the vhost controller has very high negative

impact on performance (how much actually was surprising)
• Sleepy polling improves performance reaching (~0.82%) of

direct NVMe with no virtio only a 6K IOPS drop)
• Implement adaptive polling that dynamically updates the sleep

interval based on measured throughput

Go-virtio API

• Can we implement virtio in Go such that the read and write
interfaces use virtio?

• Golang interfaces are like classes If you implement the methods
you satisfy the interface

• Go uses go routines — user level threads, should provide less
scheduling overhead when using multiple routines
• Less context switches is good for performance

• Need to understand the “M”, “G” and “P” which is part of the go
runtime
• C functions are always executed on a separate M,

implement it natively in go

Go virtio-blk (not the same HW)

SR-4

PR-4

SW-4

PW-4

10 20 30 40

34,6
MaximumIOPS(K)

• Cant use small sleeps in Golang
to do polling
• #25471

• Results shown use eventfd()
• Clearly more work needed but its

a start
• Results obtained using go test -

bench
• Note; not the same HW as before!

Other protocols

• Most applications wont be able to connect directly with virtio
• Support for iSCSI, NBD, TCMU,

• To really keep up with NVMe we need nvme-of to be more widely adopted
• Should work over TCP as well as RNICs for transitions in particular for

cloud based deployments (softroce and nvmeof-tcp)
• Add support for contiv which leverages VPP-VCL to accelerate network and

stay in user space
• At current requires TAP/TAP2 — to expose interface to the container
• Microsoft FreeFlow also aimed at network acceleration

• Both implementations use LD_PRELOADs to intercept syscalls to avoid
application changes

File based access

• Inject syscall interception library for applications that
need basic file operations typically for databases
that have data consistency models built in

• Not targeted towards file servers
• DB have a very typical IO pattern, mostly append

only as they typically have some form of WAL with
compaction

• Library is mounted in the namespace configured
based on developer intent

• Crucial to have proper testing and regression
framework

• CI/CD, devOps, End 2 End (litmus)

DB

PRELOAD

POD spec

shm
9p

• Bring advanced storage feature to individual container
workloads

• Cloud native; using the same software development paradigm
• Build for containers in containers

• IO handling from the IOC implemented fully in user space
• Control release cadence, extra performance is a bonus

• Declarative provisioning and protection policies
• Remove friction between teams

• Multi cloud from public to private
• Not a clustered storage instance rather a cluster of storage

instances

Summary about OpenEBS

QUESTIONS?

https://openebs.io

