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Latest (storage IO) patterns for 
cloud-native applications in a k8s 

environment



People  

Software 
& 

Hardware 





Applications have changed; 
& 

somebody forgot to tell storage



• Cloud native apps that are distributed systems themselves 
• Let us use Paxos, RAFT, nobody flinches 

• They want it to scale by default —  batteries included 
– HaProxy, Envoy — no more storage scaling 

• Apps are designed to fail across DC’s, regions and providers 
• Should be multi-cloud, multi-hypervisor and multi-platform 

• Databases provide distributed scale out; or one can use 
vitess for existing SQL (no-noSQL) databases 

• Datasets of individual containers are relatively small 
• The sum of the parts is greater then the whole

Cloud native software architecture



Data availability and 
performance is not (anymore) 
exclusively controlled at the 

storage layer



• Deliver fast and frequently 
• A deployment per day keeps the ….. away 

• Small teams with specific goals. Shadow IT is where the 
innovation happens — born in the cloud 

• CI/CD pipelines — blue-green or cannery deployment 
• Make install has been upgraded to make push 

• Software delivery has changed, tarball on steroids 
• Declarative intent, gitOps, chatOps 
• K8s as the unified cross cloud control plane (control loop) 

• Everything in containers either bare metal or lkvm

DevOps (the people)



• Storage appliance peculiarities bubble up in apps 
• Don't do this because…  don't do that because…. 
• Makes it hard to write code that uses the full stack optimal 

when moving from c2c, private or public 
• Some vendors — simply put their appliances in the cloud  

• Friction; “Do not run your CI while I do backups!” 
•  You need LU’s again? Gave you 100 yesterday! 

• “We simply use DAS as nothing is faster than that” 
• NVMe and PDIMs enforce a change in the way we do things 

• Increasing core counts create new challenges 
• caches, migrations, NUMA and yes — not fully utilised cores

HW / Storage trends
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What if storage for container 
native applications was itself 

container native?



• Not yet another distributed storage system; small is the new big 
• Cloud native (not washed) applications are, inherently 

distributed applications 
• One on top of the other, an operational nightmare? 

• Per workload storage system, using declarative intent defined 
by the developer 
• Applications defined storage 

• Reduce blast radius and no IO blender 
• Runs in containers for containers — in user space 
• Not a clustered storage instance rather a cluster of storage 

instances

Design constraints



Containers & k8s

Manifests express 
intent

stateless

Container 1 Container 2 Container 3

Container 1 Container 2 Container 3

Container 1 Container 2 Container 3

stateful

Data Container Data Container Data Container

Any Server, Any Cloud Any Server, Any Cloud



Solution

1. Small working sets 
2. Ephemeral 
3. Scale by N 
4. Mobile workloads 
5. DevOps responsible 

for operations 
6. Cloud lock-in 
7. Per workload 

optimisation

1. Keep data local 
2. Controller in POD 
3. N more containers 
4. Follow the workload 
5. Just another micro 

service 
6. Workload migration 
7. Declarative intent

Challenge



High level CAS architecture





Using the k8s substrate 

• Betting on k8s; don't integrate with plugins actually build on-top of it 
• CSI plugin standardised API to communicate with external storage 

(controller and agent) 
• Implement dynamic provisioner to construct “volumes” (openEBS operator) 
• Using the operator framework to construct storage topology and reflect 

storage systems state (kubectl describe) 
• watchers and CRDs to invoke logic to reconcile desired state 

• Again, using the operator framework to discover local devices and their 
properties to create storage pools dynamically (NDM) 

• Fully operated by kubectl i.e no external tools required (*) 
• Visualise topology and EE testing (Litmus)



k8s control plane for storage





Patterns; sidecars & meshes

• A CAS volume consists out of controller 
and a replica and lives somewhere 

• The fallacies of distributed computing 
(L. Peter Deutsch) 
• The only constant is change 

• How do we dynamic (re) configure?  
• Optimal transport/path 
• Rescheduling 
• Different (virtual) machines 

• Data mesh for dynamic IO 
reconfiguration 



K8s pattern; service mesh

Kasun Indrasiri 

https://medium.com/@kasunindrasiri?source=post_header_lockup


Data mesh negotiated transport

kind: DataFrabricConnection 
apiVersion: V1 
metadata: 
  labels: 
    - …. 
spec: 
  name: my-iospec 
  ioChannel: my-first-channel 
  request: 
    type: block 
    - nvmeof 
    - nbd 
    - iscsi 
    - ..... 
    properties: 
      compress: false 
      encrypt : true 
  .... 
  ....

• Controller and replica need to find 
optimal path — but also the app to 
the controller  

• Virtual “HBA” uses negotiated 
transport and features (VHCI) 
• Capable of using different 

transport types 
• Connection types and state reflected 

in custom resources 
• kubectl edit or update -f xyz.yaml 

• Opportunity to innovate for 
application optimised IO patterns: 
smart endpoints dumb pipes



Storage just fades away as a concern



Implementation details

• JIVA, the primordial soup to determine feasibility 
• Praised for its ease of use by users 

• Instrumental to use to find and explore uses case for the 
cloud native landscape 

• Does not provide efficient  “enterprise” storage features 
• Swapping out JIVA with something else is just a matter of 

adding storage classes so we are evolving (pluggable) 
• Yay for the micro service approach 

• The biggest problem to solve however is user space IO 
• Different kernels on different clouds — tainting 

• Performance in public cloud not yet the biggest concern



Input output container (IOC)

• If containers perform (mostly) API request to one and 
other, why not have them do storage IO to each other? 

• Select devices (NDM) and claim resources in the pod spec 
• DSM can handle this automatically as well 

• IOC DaemonSet grabs the devices and exposes them 
through a variety of different protocols 

• Leveraging Storage Plane Development Kit  
• There are other things available like UNVMe however 

• Bypass the kernel using UIO/VFIO and DMA straight into the  
devices by leveraging huge pages (Poll Mode Drivers) 
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Reusing virtio for containers

• Widely used and actively developed protocol which uses 
shared memory to interact with several types of hardware 

• In the case of openEBS — interested in user space virtio-
{blk,nvme} initiator 

• Primary reason for developing this was to have a loosely 
coupling with SPDK which use Poll Mode Drivers (PMD) 
• Perhaps also LIO’s vhost support 

• Even-though we have plenty of cores — having anything 
and everything attached to openEBS do polling is not 
acceptable 

• There was no “libvirtio” unfortunately, so we created one



Feasibility test

• SPDK in full polling mode using the 
SPDK provided plugin 

• Virtio plugin using SHM, to issue IO 
to SPDKs 

• Experiment expectations: 
• Due to non polling mode 

performance will drop 
• Due to eventfd() performance 

will drop (context switches) 
• Desired result: ~kernel 

• Quid pro quo

SPDK

FIO

Virtio

FIO

SPDK

Kick



Results of the first test
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Results using adaptive polling
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Initial observation

• SPDK  can indeed out perform the kernel 
• Using it however has some ramifications but is IO processing 

in user space becoming a new trend? 
• Using virtio as a user space library to do block IO is feasible 
• Using eventfd() to kick the vhost controller has very high negative 

impact on performance (how much actually was surprising) 
• Sleepy polling improves performance reaching (~0.82%) of  

direct NVMe with no virtio only a 6K IOPS drop) 
• Implement adaptive polling that dynamically updates the sleep 

interval based on measured throughput



Go-virtio API

• Can we implement virtio in Go such that the read and write 
interfaces use virtio? 

• Golang interfaces are like classes If you implement the methods 
you satisfy the interface 

• Go uses go routines —  user level threads, should provide less 
scheduling overhead when using multiple routines 
• Less context switches is good for performance 

• Need to understand the “M”, “G” and “P” which is part of the go 
runtime 
• C functions are always executed on a separate M, 

implement it natively in go



Go virtio-blk (not the same HW)
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• Cant use small sleeps  in Golang 
to do polling 
• #25471 

• Results shown use eventfd() 
• Clearly more work needed but its 

a start 
• Results obtained using go test -

bench 
• Note; not the same HW as before!



Other protocols

• Most applications wont be able to connect directly with virtio 
• Support for iSCSI, NBD, TCMU,  

• To really keep up with NVMe  we need nvme-of to be more widely adopted 
• Should work over TCP as well as RNICs for transitions in particular for 

cloud based deployments (softroce and nvmeof-tcp) 
• Add support for contiv which leverages VPP-VCL to accelerate network and 

stay in user space 
• At current requires TAP/TAP2 — to expose interface to the container 
• Microsoft FreeFlow also aimed at network acceleration 

• Both implementations use LD_PRELOADs to intercept syscalls to avoid 
application changes



File based access

• Inject syscall interception library for applications that 
need basic file operations typically for databases 
that have data consistency models built in 

• Not targeted towards file servers 
• DB have a very typical IO pattern, mostly append 

only as they typically have some form of WAL with 
compaction 

• Library is mounted in the namespace configured 
based on developer intent 

• Crucial to have proper testing  and regression 
framework 

• CI/CD, devOps, End 2 End (litmus)

DB

PRELOAD

POD spec

shm
9p



• Bring advanced storage feature to individual container 
workloads 

• Cloud native; using the same software development paradigm 
• Build for containers in containers 

• IO handling from the IOC implemented fully in user space 
• Control release cadence, extra performance is a bonus 

• Declarative provisioning and protection policies 
• Remove friction between teams 

• Multi cloud from public to private 
• Not a clustered storage instance rather a cluster of storage 

instances

Summary about OpenEBS



QUESTIONS?

https://openebs.io


