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The process of kernel hacking is a

CYCLE
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The Creative Cycle

 Code your changes

 Send in your patch

 Gather feedback

 Repeat
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The Creative Cycle

 Code your contribution

 Prepare and send the patchset
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The Creative Cycle

 Incorporate changes

− Use feedback to improve

− If your contribution is rejected, find another

 Regenerate and resend your patchset
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Repeat the previous two slides until
Your patchset is accepted…
Then repeat with a new patchset…
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Communicating with team members
and community
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Coding your changes
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Coding your changes

 Plan

 Code

 Compile & run

 Test & debug
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Coding your changes

 Plan
− Trace existing paths of execution

− Find examples similar to your goal

− Learn which lines are relevant
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Coding your changes

 Hack your code
− Language is C

− Follow kernel coding style

− Gain skill with your editor
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Generating and Delivering Your Patch
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 Git commit strategy

 Git branching strategy

 Composing the commit message

 The patch
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 Why plain text?
− Email formatting will break your code

− Team members will apply your patch as is

− Commit message will become subject line and 
content

− Use a specific mail client such as mutt 

     (no gmail!)
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content
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Now wait for your feedback,
And do it all again…
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Happy Hacking!
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Got Feedback?

 Rate and Review the session using the  
GHC Mobile App

To download visit www.gracehopper.org
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Resources
 Gnome Outreach Program for Women https://wiki.gnome.org/OutreachProgramForWomen
 Kernel.org git repositories https://git.kernel.org/cgit/
 Linux Kernel Newbies http://kernelnewbies.org/
 OPW Intro page http://kernelnewbies.org/OPWIntro
 The Eudyptula Challenge http://eudyptula-challenge.org/
 KVM Installation https://help.ubuntu.com/community/KVM/Installation
 Linux Kernel Mailing List https://lkml.org/
 Various Linux related mailing lists at Gmane http://gmane.org/find.php?list=kernel
 Linux Foundation events http://events.linuxfoundation.org/
 Linux Weekly News http://lwn.net/
 #irchelp http://www.irchelp.org/
 Irssi – The Client of the Future http://www.irssi.org/
 Wikipedia entry for the grep command http://en.wikipedia.org/wiki/Grep
 Linux Cross Reference at Free Electrons http://lxr.free-electrons.com/
 Linux Kernel Coding Style (pdf) https://computing.llnl.gov/linux/slurm/coding_style.pdf
 Vim the editor http://www.vim.org/
 Pro Git http://git-scm.com/book https://www.gitbook.io/book/gitbookio/progit
 The Mutt E-Mail Client http://www.mutt.org/ 
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Image Credits

 Arrows Circle by Freepik CC BY 3.0
 Communication shannon-weaver2 by Einar Faanes CC BY-SA 3.0
 Xaric screen shot by Triddle BSD License 

http://commons.wikimedia.org/wiki/File:Xaric_screen_shot.jpg
 Coding All Night Long by Snatcherdudette http://

snatcherdudette.deviantart.com/art/Coding-all-night-long-183815498
 Music present by Marta Crowe Creative Commons Attribution 2.0 Generic
 Linux Foundation Logo is in the public domain
 Linux “Tux” Logo is in the public domain

http://www.flaticon.com/authors/freepik
http://creativecommons.org/licenses/by/3.0/
http://commons.wikimedia.org/wiki/User:Emuzesto
http://commons.wikimedia.org/wiki/User:Emuzesto
http://commons.wikimedia.org/wiki/User:Emuzesto
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/
http://en.wikipedia.org/wiki/User:Triddle
http://snatcherdudette.deviantart.com/art/Coding-all-night-long-183815498
http://snatcherdudette.deviantart.com/art/Coding-all-night-long-183815498
http://www.flickr.com/people/59418080@N00
http://en.wikipedia.org/wiki/en:Creative_Commons
http://en.wikipedia.org/wiki/en:Creative_Commons
http://creativecommons.org/licenses/by/2.0/deed.en
http://creativecommons.org/licenses/by/2.0/deed.en
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