
2014

Linux Kernel Hacking
101

Kelley Nielsen

Salticidoftheearth.com

For the Linux Foundation

Oct 8, 2014

#GHC14

2014

2014

2014

The process of kernel hacking is a

CYCLE

2014

The Creative Cycle

 Code your changes

 Send in your patch

 Gather feedback

 Repeat

2014

The Creative Cycle

 Find a contribution to make

− Read stored communications

− Gain experience

− Ask

2014

The Creative Cycle

 Find a contribution to make

− Read stored communications

− Gain experience

− Ask

2014

The Creative Cycle

 Find a contribution to make

− Read stored communications

− Gain experience

− Ask

2014

The Creative Cycle

 Find a contribution to make

− Read stored communications

− Gain experience

− Ask

2014

The Creative Cycle

 Code your contribution

 Prepare and send the patchset

2014

The Creative Cycle

 Gather feedback

− Testing results

− Mentoring and guidance

− Discussion of strategies

− General suggestions

2014

The Creative Cycle

 Gather feedback

− Testing results

− Mentoring and guidance

− Discussion of strategies

− General suggestions

2014

The Creative Cycle

 Gather feedback

− Testing results

− Mentoring and guidance

− Discussion of strategies

− General suggestions

2014

The Creative Cycle

 Gather feedback

− Testing results

− Mentoring and guidance

− Discussion of strategies

− General suggestions

2014

The Creative Cycle

 Gather feedback

− Testing results

− Mentoring and guidance

− Discussion of strategies

− General suggestions

2014

The Creative Cycle

 Incorporate changes

− Use feedback to improve

− If your contribution is rejected, find another

 Regenerate and resend your patchset

2014

Repeat the previous two slides until
Your patchset is accepted…
Then repeat with a new patchset…

2014

Communicating with team members
and community

2014

Communicating

 Mailing lists

 Private email

 Conferences

 Linux Weekly News

2014

Communicating

 Mailing lists

 Private email

 Conferences

 Linux Weekly News

2014

Communicating

 Mailing lists

 Private email

 Conferences

 Linux Weekly News

2014

Communicating

 Mailing lists

 Private email

 Conferences

 Linux Weekly News

2014

Communicating

 Internet Relay Chat (IRC)
− Looks like multi-way text messaging

− Use a dedicated client (not a web client)

− Connect to a network

− Once on the network, join a channel

2014

Communicating

 Internet Relay Chat (IRC)
− Looks like multi-way text messaging

− Use a dedicated client (not a web client)

− Connect to a network

− Once on the network, join a channel

2014

Communicating

 Internet Relay Chat (IRC)
− Looks like multi-way text messaging

− Use a dedicated client (not a web client)

− Connect to a network

− Once on the network, join a channel

2014

Communicating

 Internet Relay Chat (IRC)
− Looks like multi-way text messaging

− Use a dedicated client (not a web client)

− Connect to a network

− Once on the network, join a channel

2014

Communicating

 Internet Relay Chat (IRC)
− Looks like multi-way text messaging

− Use a dedicated client (not a web client)

− Connect to a network

− Once on the network, join a channel

2014

2014

Coding your changes

2014

Coding your changes

 Plan

 Code

 Compile & run

 Test & debug

2014

Coding your changes

 Plan
− Trace existing paths of execution

− Find examples similar to your goal

− Learn which lines are relevant

− Your friends are grep and the lxr ident search

2014

Coding your changes

 Plan
− Trace existing paths of execution

− Find examples similar to your goal

− Learn which lines are relevant

− Your friends are grep and the lxr ident search

2014

Coding your changes

 Plan
− Trace existing paths of execution

− Find examples similar to your goal

− Learn which lines are relevant

− Your friends are grep and the lxr ident search

2014

Coding your changes

 Plan
− Trace existing paths of execution

− Find examples similar to your goal

− Learn which lines are relevant

− Your friends are grep and the lxr ident search

2014

Coding your changes

 Hack your code
− Language is C

− Follow kernel coding style

− Gain skill with your editor

2014

Coding your changes

 Compile and run
− This involves installation and rebooting!

− Use a virtual machine or dedicated machine

− Maintain a known working and a test kernel

2014

Coding your changes

 Compile and run
− This involves installation and rebooting!

− Use a virtual machine or dedicated machine

− Maintain a known working and a test kernel

2014

Coding your changes

 Compile and run
− This involves installation and rebooting!

− Use a virtual machine or dedicated machine

− Maintain a known working and a test kernel

2014

Coding your changes

 Test and debug
− Your friend is printk()

− Find messages in /var/log/kern.log

− Create testing scenarios

2014

Coding your changes

 Test and debug
− Your friend is printk()

− Find messages in /var/log/kern.log

− Create testing scenarios

2014

Coding your changes

 Test and debug
− Your friend is printk()

− Find messages in /var/log/kern.log

− Create testing scenarios

2014

Generating and Delivering Your Patch

2014

Delivering Your Patch

 Git commit strategy

 Git branching strategy

 Composing the commit message

 The patch

2014

Delivering Your Patch

 Git commit strategy
− Make small incremental changes
− Make changes in logical order
− Each change should be encapsulated
− Be prepared to alter previous commits
− Be prepared for upstream changes as you

update your sources

2014

Delivering Your Patch

 Git commit strategy
− Make small incremental changes
− Make changes in logical order
− Each change should be encapsulated
− Be prepared to alter previous commits
− Be prepared for upstream changes as you

update your sources

2014

Delivering Your Patch

 Git commit strategy
− Make small incremental changes
− Make changes in logical order
− Each change should be encapsulated
− Be prepared to alter previous commits
− Be prepared for upstream changes as you

update your sources

2014

Delivering Your Patch

 Git commit strategy
− Make small incremental changes
− Make changes in logical order
− Each change should be encapsulated
− Be prepared to alter previous commits
− Be prepared for upstream changes as you

update your sources

2014

Delivering Your Patch

 Git commit strategy
− Make small incremental changes
− Make changes in logical order
− Each change should be encapsulated
− Be prepared to alter previous commits
− Be prepared for upstream changes as you

update your sources

2014

Delivering Your Patch

 Git branching strategy
− Keep master branch unmodified

− Create a working branch

− Use a throwaway branch to squash commits

− If this method doesn’t work for you, try
another

2014

Delivering Your Patch

 Git branching strategy
− Keep master branch unmodified

− Create a working branch

− Use a throwaway branch to squash commits

− If this method doesn’t work for you, try
another

2014

Delivering Your Patch

 Git branching strategy
− Keep master branch unmodified

− Create a working branch

− Use a throwaway branch to squash commits

− If this method doesn’t work for you, try
another

2014

Delivering Your Patch

 Git branching strategy
− Keep master branch unmodified

− Create a working branch

− Use a throwaway branch to squash commits

− If this method doesn’t work for you, try
another

2014

Delivering Your Patch

 Composing the commit message
− Work as hard on this as you do on coding!

− Read existing examples

− Be concise, yet thorough

− Use imperative language

2014

Delivering Your Patch

 Composing the commit message
− Work as hard on this as you do on coding!

− Read existing examples

− Be concise, yet thorough

− Use imperative language

2014

Delivering Your Patch

 Composing the commit message
− Work as hard on this as you do on coding!

− Read existing examples

− Be concise, yet thorough

− Use imperative language

2014

Delivering Your Patch

 Composing the commit message
− Work as hard on this as you do on coding!

− Read existing examples

− Be concise, yet thorough

− Use imperative language

2014

Delivering Your Patch

 The patch itself
− Run checkpatch.pl on the files you change

− Generate patch with a git command

− Cc everyone involved with the code

− Send using plain text mail

2014

Delivering Your Patch

 The patch itself
− Run checkpatch.pl on the files you change

− Generate patch with a git command

− Cc everyone involved with the code

− Send using plain text mail

2014

Delivering Your Patch

 The patch itself
− Run checkpatch.pl on the files you change

− Generate patch with a git command

− Cc everyone involved with the code

− Send using plain text mail

2014

Delivering Your Patch

 The patch itself
− Run checkpatch.pl on the files you change

− Generate patch with a git command

− Cc everyone involved with the code

− Send using plain text mail

2014

Delivering Your Patch

 Why plain text?
− Email formatting will break your code

− Team members will apply your patch as is

− Commit message will become subject line and
content

− Use a specific mail client such as mutt

 (no gmail!)

2014

Delivering Your Patch

 Why plain text?
− Email formatting will break your code

− Team members will apply your patch as is

− Commit message will become subject line and
content

− Use a specific mail client such as mutt

 (no gmail!)

2014

Delivering Your Patch

 Why plain text?
− Email formatting will break your code

− Team members will apply your patch as is

− Commit message will become subject line and
content

− Use a specific mail client such as mutt

 (no gmail!)

2014

Delivering Your Patch

 Why plain text?
− Email formatting will break your code

− Team members will apply your patch as is

− Commit message will become subject line and
content

− Use a specific mail client such as mutt

 (no gmail!)

2014

Now wait for your feedback,
And do it all again…

2014

Happy Hacking!

2014

Got Feedback?

 Rate and Review the session using the
GHC Mobile App

To download visit www.gracehopper.org

2014

Resources
 Gnome Outreach Program for Women https://wiki.gnome.org/OutreachProgramForWomen
 Kernel.org git repositories https://git.kernel.org/cgit/
 Linux Kernel Newbies http://kernelnewbies.org/
 OPW Intro page http://kernelnewbies.org/OPWIntro
 The Eudyptula Challenge http://eudyptula-challenge.org/
 KVM Installation https://help.ubuntu.com/community/KVM/Installation
 Linux Kernel Mailing List https://lkml.org/
 Various Linux related mailing lists at Gmane http://gmane.org/find.php?list=kernel
 Linux Foundation events http://events.linuxfoundation.org/
 Linux Weekly News http://lwn.net/
 #irchelp http://www.irchelp.org/
 Irssi – The Client of the Future http://www.irssi.org/
 Wikipedia entry for the grep command http://en.wikipedia.org/wiki/Grep
 Linux Cross Reference at Free Electrons http://lxr.free-electrons.com/
 Linux Kernel Coding Style (pdf) https://computing.llnl.gov/linux/slurm/coding_style.pdf
 Vim the editor http://www.vim.org/
 Pro Git http://git-scm.com/book https://www.gitbook.io/book/gitbookio/progit
 The Mutt E-Mail Client http://www.mutt.org/

https://wiki.gnome.org/OutreachProgramForWomen
https://wiki.gnome.org/OutreachProgramForWomen
https://git.kernel.org/cgit/
https://git.kernel.org/cgit/
http://kernelnewbies.org/
http://kernelnewbies.org/
http://kernelnewbies.org/OPWIntro
http://kernelnewbies.org/OPWIntro
http://eudyptula-challenge.org/
http://eudyptula-challenge.org/
https://help.ubuntu.com/community/KVM/Installation
https://help.ubuntu.com/community/KVM/Installation
https://lkml.org/
https://lkml.org/
http://gmane.org/find.php?list=kernel
http://gmane.org/find.php?list=kernel
http://events.linuxfoundation.org/
http://events.linuxfoundation.org/
http://lwn.net/
http://lwn.net/
http://www.irchelp.org/
http://www.irchelp.org/
http://www.irssi.org/
http://www.irssi.org/
http://en.wikipedia.org/wiki/Grep
http://en.wikipedia.org/wiki/Grep
http://lxr.free-electrons.com/
http://lxr.free-electrons.com/
https://computing.llnl.gov/linux/slurm/coding_style.pdf
https://computing.llnl.gov/linux/slurm/coding_style.pdf
http://www.vim.org/
http://www.vim.org/
http://git-scm.com/book
http://git-scm.com/book
https://www.gitbook.io/book/gitbookio/progit
https://www.gitbook.io/book/gitbookio/progit
http://www.mutt.org/
http://www.mutt.org/

2014

Image Credits

 Arrows Circle by Freepik CC BY 3.0
 Communication shannon-weaver2 by Einar Faanes CC BY-SA 3.0
 Xaric screen shot by Triddle BSD License

http://commons.wikimedia.org/wiki/File:Xaric_screen_shot.jpg
 Coding All Night Long by Snatcherdudette http://

snatcherdudette.deviantart.com/art/Coding-all-night-long-183815498
 Music present by Marta Crowe Creative Commons Attribution 2.0 Generic
 Linux Foundation Logo is in the public domain
 Linux “Tux” Logo is in the public domain

http://www.flaticon.com/authors/freepik
http://creativecommons.org/licenses/by/3.0/
http://commons.wikimedia.org/wiki/User:Emuzesto
http://commons.wikimedia.org/wiki/User:Emuzesto
http://commons.wikimedia.org/wiki/User:Emuzesto
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/
http://en.wikipedia.org/wiki/User:Triddle
http://snatcherdudette.deviantart.com/art/Coding-all-night-long-183815498
http://snatcherdudette.deviantart.com/art/Coding-all-night-long-183815498
http://www.flickr.com/people/59418080@N00
http://en.wikipedia.org/wiki/en:Creative_Commons
http://en.wikipedia.org/wiki/en:Creative_Commons
http://creativecommons.org/licenses/by/2.0/deed.en
http://creativecommons.org/licenses/by/2.0/deed.en

2014

2014

2014

Title Goes Here

 The first point
− Sub-points

• Down one more
• And again

o Once more

2014

Title Goes Here

 The first point
− Sub-points

• Down one more
• And again

o Once more

	Slide 1
	Slide 2
	Slide 3
	The Creative Cycle
	The Creative Cycle
	The Creative Cycle
	The Creative Cycle
	The Creative Cycle
	The Creative Cycle
	The Creative Cycle
	The Creative Cycle
	The Creative Cycle
	The Creative Cycle
	The Creative Cycle
	The Creative Cycle
	Slide 16
	Slide 17
	Communicating
	Communicating
	Communicating
	Communicating
	Communicating
	Communicating
	Communicating
	Communicating
	Communicating
	Slide 27
	Coding your changes
	Coding your changes
	Coding your changes
	Coding your changes
	Coding your changes
	Coding your changes
	Coding your changes
	Coding your changes
	Coding your changes
	Coding your changes
	Coding your changes
	Coding your changes
	Coding your changes
	Slide 41
	Delivering Your Patch
	Delivering Your Patch
	Delivering Your Patch
	Delivering Your Patch
	Delivering Your Patch
	Delivering Your Patch
	Delivering Your Patch
	Delivering Your Patch
	Delivering Your Patch
	Delivering Your Patch
	Delivering Your Patch
	Delivering Your Patch
	Delivering Your Patch
	Delivering Your Patch
	Delivering Your Patch
	Delivering Your Patch
	Delivering Your Patch
	Delivering Your Patch
	Delivering Your Patch
	Delivering Your Patch
	Delivering Your Patch
	Delivering Your Patch
	Slide 64
	Slide 65
	Got Feedback?
	Resources
	Image Credits
	Slide 69
	Slide 70
	Title Goes Here
	Title Goes Here

