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My Contact Info

● thomas@redhat.com

● thomasdcameron on Twitter

● choirboy on #rhel on Freenode

● http://people.redhat.com/tcameron

● http://excogitat.us

● thomas.cameron on Google talk



Agenda

● Red Hat and Red Hat Network Satellite Server
● Spacewalk

● Assumptions

● Packaging internally developed software

● Packaging COTS software



Red Hat and Red Hat Network Satellite Server

● RHN Satellite is the best systems management 
solution for Red Hat products.

● Mature, robust product with hundreds of thousands of 
servers under management at customers in practically 
every vertical you can imagine.



Red Hat and Red Hat Network Satellite Server

● As Fedora is the upstream, community project for Red 
Hat Enterprise Linux, Spacewalk is the upstream, 
community project for Red Hat Network Satellite 
Server

● http://spacewalk.redhat.com/

http://spacewalk.redhat.com/


Assumptions

● You are already somewhat familiar with RPMs
● This is something of an intro, but we're going to be 

moving rather quickly!



Packaging internally developed software

● We'll use an app for which you can get the source 
code as an example. 

● Say you want to install a new and different different 
version of Apache httpd in /opt/apache instead of 
using the Red Hat provided RPMs.



Packaging internally developed software

● Make sure the “Development tools” package group is 
installed.

● yum groupinstall “Development tools”

● For convenience, make sure rpmdevtools is installed.
● yum install rpmdev



Packaging internally developed software

● First, we'll talk about how you would install from 
source.

● For much F/OSS software, it's a simple
● ./configure

● make

● make install



Packaging internally developed software

● Since you're installing to a non-standard location and 
building as a non-root user, maybe:

● ./configure ­­prefix=/opt/apache

● make

● make DESTDIR=/var/tmp install







Packaging internally developed software

● <grumble>

● “I'm a smart guy, I can do this!”

● Google

● Eureka!

● fix ./srclib/apr-util/xml/expat/Makefile.in

● recompile

● success!

● “tar it up, baby, it's ready to go!”







Packaging internally developed software

● Note this does not take into account setting your 
search path or manpath.

● Common “solution:” hack /etc/profile 

● Also doesn't take into account your SysV init scripts.
● You're either going to copy from an existing one or just 

pop a line into rc.local 









Packaging internally developed software

● Awesome! Now your company has a custom, bleeding 
edge version of Apache installed!

● No one but you knows about the source code change 
you made (W00T!!! JOB SECURITY!!!).

● No one but you knows about the hacks to 
/etc/profile, and even if they did, they'd have to 
manually add it to every system.



Packaging internally developed software

● Let's say you win the lottery. You're gone, never to 
darken the door of this joint again.

● How do they know what version is installed on all the 
systems?

● How do they check the integrity of those installations?
● What if they need to roll out a new version? What about 

the patch? They'll probably have to figure it out all over 
again.





Packaging internally developed software

● Let's look at how to package internally developed 
software.

● Easier to deploy
● Easier to consistency check
● Easier to version control



Packaging internally developed software

● As a non-root user, use rpmdev-setuptree. It will 
create:

● ~/rpmbuild directory

● ~/.rpmmacros file

● Comment %__arch_install_post out









Packaging internally developed software

● GNU Privacy Guard (GPG) is a F/OSS implementation 
of Pretty Good Privacy (PGP). Per the man page, “It is 
a tool to provide digital encryption and signing services 
using the OpenPGP standard.”

● For purposes of this presentation, we will use GPG to 
sign internally developed packages. You should not 
allow unsigned packages to be installed (in fact, yum 
will not allow you to by default)!

● Your package building/signing account will generate a 
keypair. Keep the private key private, make the public 
key publicly available.



Packaging internally developed software

● We recommend a secure signing process – have a 
single, or limited number of accounts with which 
trusted admins can sign packages.

● Multi-factor or checks and balances is not a bad thing. 
One person or team can build packages, another has 
to sign them.



Packaging internally developed software

● Your rpm building account will need to generate a gpg 
keypair on a build system (not the Satellite server) and 
then export the ascii armor.

● gpg ­­gen­key

● gpg ­­export ­a [name] ­­armor > [pubkey]





















Packaging internally developed software

● List your gpg key

● Copy it to your .rpmmacros file





Packaging internally developed software

● Grab your source file. In this case, httpd-2.2.17.tar.gz 
from http://httpd.apache.org

● Put it in ~/rpmbuild/SOURCES 

http://httpd.apache.org/




Packaging internally developed software

● Create a shell script for setting PATH and MANPATH 
variables

● Add it to ~/rpmbuild/SOURCES as well

● This will go in /etc/profile.d on systems upon 
which this RPM is installed.





Packaging internally developed software

● Generate a patch file
● In this case, the original file is copied and named 
Makefile.in.orig

● You can use gendiff to create the diff file.

● Copy the diff over to the SOURCES directory







Packaging internally developed software

● Change to your ~/rpmbuild/SOURCES directory and 
create a new init script

● rpmdev­newinit httpd











Packaging internally developed software

● Change to your ~/rpmbuild/SPECS directory and 
create a new spec file

● rpmdev­newspec 





Packaging internally developed software

● Let's look at the spec file the tool generated to see 
what it is creating.







Packaging internally developed software

● A completed spec file might look like this:











Packaging internally developed software

● How did we get that file list?

● The process below (plus trial and error)









Packaging internally developed software

● Now let's test each section of the spec file.

























Packaging internally developed software

● Hint: This is also a good place to go and make sure 
your package manifest (the %files section) is correct















Packaging internally developed software

● About debuginfo RPMs:
● To disable stripping binaries and creating the debug 

packages, add this to the spec file:
● %define debug_package %{nil}

● You will probably have to change your %files section







Packaging internally developed software

● Sign your RPM





Packaging internally developed software

● Import the gpg key into the RPM database and install 
and test











Packaging internally developed software

● Back to the spec file!

● In this case, adding only files was not the right choice, 
we needed to add the directories the packages owns, 
as well!





















Packaging third party COTS software

● Often times software is installed from tarballs and shell 
scripts or other installers.

● Makes it very hard to centralize version control
● Makes it very hard to centralize integrity checking
● Makes it very hard to centralize deployment

● And, no, ”for i in host1 host2 host3; do scp 
my.tgz root@$i; done” is not an enterprise centralized 
deployment mechanism!



Packaging third party COTS software

● For this example, we are going to create an RPM from 
an application which has been installed by an installer 
program into which we have no visibility.

● First, get a baseline of what is installed. You can run the 
/etc/cron.daily/mlocate script to update the 
locate database. Dump that to a text file.

● Install your app, run the mlocate script again, and 
dump it to a text file.

● Diff the text files.
● Use /bin/find to find anything on the filesystem 

modified since your first text file was made.







Packaging third party COTS software

● So in this case, we see that the following files have 
been added to the system or modified:

● /etc/foo.conf
● /etc/ld.so.conf.d/foo-x86_64.conf
● /etc/profile (we know it changed, but not how)
● /opt/myapp/bin

● /opt/myapp/bin/bar
● /opt/myapp/bin/foo



Packaging third party COTS software

● So in this case, we see that the following files have 
been added to the system or modified:

● /opt/myapp/lib
● /opt/myapp/lib/libbar.so
● /opt/myapp/lib/libbaz.so
● /opt/myapp/lib/libfoo.so

● /opt/myapp/sbin
● /opt/myapp/sbin/baz



Packaging third party COTS software

● Look for any files which will need to be customized
● Inspect /etc/profile





Packaging third party COTS software

● Look for any files which will need to be customized
● The only one of these which might change from system 

to system is the config file, /etc/foo.conf





Packaging third party COTS software

● For now, just remember that the config file has settings 
which will need to be changed from host to host.



Packaging third party COTS software

● For now, just remember that the config file has settings 
which will need to be changed from host to host.

● Remember config file macros in RHN Satellite...?



Packaging third party COTS software

● Create a directory called [app]-[version].[release]
● For instance, ~/myapp­1.0

● Copy the installed software into this directory. Can be 
hierarchical or just dumped into the directory, but 
hierarchical is more human recognizable. The directory 
you create will be the “root” of the RPM.







Packaging third party COTS software

● Since we don't want to modify the system-provided 
/etc/profile, we'll create a script to go in 
/etc/profile.d called foo.sh and add it to our 
tree:







Packaging third party COTS software

● Create a tar.gz or tar.bz2 file from this directory.  The 
name should be something like:

● [name]­[version].[build].tar.gz or

● [name]­[version].[build].tgz or

● [name]­[version].[build].tar.bz2





Packaging third party COTS software

● Now that you've created the tarball, put it where a non-
root user can get it. Make sure the non-root user can 
read it!





Packaging third party COTS software

● Make sure you have the “Development tools” package 
group installed. For convenience sake, we recommend 
you also install the rpmdevtools package

● As a non-root user, create your RPM build tree using 
rpmdev-setuptree





Packaging third party COTS software

● Copy the tarball into your ~/rpmbuild/SOURCES 
directory



Packaging third party COTS software

● Change your ~/rpmbuild/SPECS directory and 
create a spec file

● rpmdev­newspec [name]





Packaging third party COTS software

● In this case, we want to setup and prep, but we do not 
want to ./configure or make or make DESTDIR 
install. 

● We also do not want to strip the binaries of debug 
symbols – they may have been compiled and/or 
stripped in a non-GNU tools environment and we could 
break them.















Packaging third party COTS software

● Sign your packages with gpg as described previously.









And That's It!

● You've gotten a glimpse into how to package from 
source and with COTS binaries!



Thank you!

● If you liked today's presentation, please let us know!

● Thomas's contact info:
● thomas@redhat.com
● choirboy on #rhel on Freenode
● thomasdcameron on Twitter
● http://people.redhat.com/tcameron
● http://excogitat.us 



Questions?
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