

Thomas Cameron, RHCA, RHCSS, RHCDS, RHCVA, RHCX

Chief Architect, Red Hat
06.28.12

 RED HAT NETWORK POWER

USER TIPS AND TRICKS

PACKAGING SOFTWARE

My Contact Info

● thomas@redhat.com

● thomasdcameron on Twitter

● choirboy on #rhel on Freenode

● http://people.redhat.com/tcameron

● http://excogitat.us

● thomas.cameron on Google talk

Agenda

● Red Hat and Red Hat Network Satellite Server
● Spacewalk

● Assumptions

● Packaging internally developed software

● Packaging COTS software

Red Hat and Red Hat Network Satellite Server

● RHN Satellite is the best systems management
solution for Red Hat products.

● Mature, robust product with hundreds of thousands of
servers under management at customers in practically
every vertical you can imagine.

Red Hat and Red Hat Network Satellite Server

● As Fedora is the upstream, community project for Red
Hat Enterprise Linux, Spacewalk is the upstream,
community project for Red Hat Network Satellite
Server

● http://spacewalk.redhat.com/

http://spacewalk.redhat.com/

Assumptions

● You are already somewhat familiar with RPMs
● This is something of an intro, but we're going to be

moving rather quickly!

Packaging internally developed software

● We'll use an app for which you can get the source
code as an example.

● Say you want to install a new and different different
version of Apache httpd in /opt/apache instead of
using the Red Hat provided RPMs.

Packaging internally developed software

● Make sure the “Development tools” package group is
installed.

● yum groupinstall “Development tools”

● For convenience, make sure rpmdevtools is installed.
● yum install rpmdev

Packaging internally developed software

● First, we'll talk about how you would install from
source.

● For much F/OSS software, it's a simple
● ./configure

● make

● make install

Packaging internally developed software

● Since you're installing to a non-standard location and
building as a non-root user, maybe:

● ./configure ­­prefix=/opt/apache

● make

● make DESTDIR=/var/tmp install

Packaging internally developed software

● <grumble>

● “I'm a smart guy, I can do this!”

● Google

● Eureka!

● fix ./srclib/apr-util/xml/expat/Makefile.in

● recompile

● success!

● “tar it up, baby, it's ready to go!”

Packaging internally developed software

● Note this does not take into account setting your
search path or manpath.

● Common “solution:” hack /etc/profile

● Also doesn't take into account your SysV init scripts.
● You're either going to copy from an existing one or just

pop a line into rc.local

Packaging internally developed software

● Awesome! Now your company has a custom, bleeding
edge version of Apache installed!

● No one but you knows about the source code change
you made (W00T!!! JOB SECURITY!!!).

● No one but you knows about the hacks to
/etc/profile, and even if they did, they'd have to
manually add it to every system.

Packaging internally developed software

● Let's say you win the lottery. You're gone, never to
darken the door of this joint again.

● How do they know what version is installed on all the
systems?

● How do they check the integrity of those installations?
● What if they need to roll out a new version? What about

the patch? They'll probably have to figure it out all over
again.

Packaging internally developed software

● Let's look at how to package internally developed
software.

● Easier to deploy
● Easier to consistency check
● Easier to version control

Packaging internally developed software

● As a non-root user, use rpmdev-setuptree. It will
create:

● ~/rpmbuild directory

● ~/.rpmmacros file

● Comment %__arch_install_post out

Packaging internally developed software

● GNU Privacy Guard (GPG) is a F/OSS implementation
of Pretty Good Privacy (PGP). Per the man page, “It is
a tool to provide digital encryption and signing services
using the OpenPGP standard.”

● For purposes of this presentation, we will use GPG to
sign internally developed packages. You should not
allow unsigned packages to be installed (in fact, yum
will not allow you to by default)!

● Your package building/signing account will generate a
keypair. Keep the private key private, make the public
key publicly available.

Packaging internally developed software

● We recommend a secure signing process – have a
single, or limited number of accounts with which
trusted admins can sign packages.

● Multi-factor or checks and balances is not a bad thing.
One person or team can build packages, another has
to sign them.

Packaging internally developed software

● Your rpm building account will need to generate a gpg
keypair on a build system (not the Satellite server) and
then export the ascii armor.

● gpg ­­gen­key

● gpg ­­export ­a [name] ­­armor > [pubkey]

Packaging internally developed software

● List your gpg key

● Copy it to your .rpmmacros file

Packaging internally developed software

● Grab your source file. In this case, httpd-2.2.17.tar.gz
from http://httpd.apache.org

● Put it in ~/rpmbuild/SOURCES

http://httpd.apache.org/

Packaging internally developed software

● Create a shell script for setting PATH and MANPATH
variables

● Add it to ~/rpmbuild/SOURCES as well

● This will go in /etc/profile.d on systems upon
which this RPM is installed.

Packaging internally developed software

● Generate a patch file
● In this case, the original file is copied and named
Makefile.in.orig

● You can use gendiff to create the diff file.

● Copy the diff over to the SOURCES directory

Packaging internally developed software

● Change to your ~/rpmbuild/SOURCES directory and
create a new init script

● rpmdev­newinit httpd

Packaging internally developed software

● Change to your ~/rpmbuild/SPECS directory and
create a new spec file

● rpmdev­newspec

Packaging internally developed software

● Let's look at the spec file the tool generated to see
what it is creating.

Packaging internally developed software

● A completed spec file might look like this:

Packaging internally developed software

● How did we get that file list?

● The process below (plus trial and error)

Packaging internally developed software

● Now let's test each section of the spec file.

Packaging internally developed software

● Hint: This is also a good place to go and make sure
your package manifest (the %files section) is correct

Packaging internally developed software

● About debuginfo RPMs:
● To disable stripping binaries and creating the debug

packages, add this to the spec file:
● %define debug_package %{nil}

● You will probably have to change your %files section

Packaging internally developed software

● Sign your RPM

Packaging internally developed software

● Import the gpg key into the RPM database and install
and test

Packaging internally developed software

● Back to the spec file!

● In this case, adding only files was not the right choice,
we needed to add the directories the packages owns,
as well!

Packaging third party COTS software

● Often times software is installed from tarballs and shell
scripts or other installers.

● Makes it very hard to centralize version control
● Makes it very hard to centralize integrity checking
● Makes it very hard to centralize deployment

● And, no, ”for i in host1 host2 host3; do scp
my.tgz root@$i; done” is not an enterprise centralized
deployment mechanism!

Packaging third party COTS software

● For this example, we are going to create an RPM from
an application which has been installed by an installer
program into which we have no visibility.

● First, get a baseline of what is installed. You can run the
/etc/cron.daily/mlocate script to update the
locate database. Dump that to a text file.

● Install your app, run the mlocate script again, and
dump it to a text file.

● Diff the text files.
● Use /bin/find to find anything on the filesystem

modified since your first text file was made.

Packaging third party COTS software

● So in this case, we see that the following files have
been added to the system or modified:

● /etc/foo.conf
● /etc/ld.so.conf.d/foo-x86_64.conf
● /etc/profile (we know it changed, but not how)
● /opt/myapp/bin

● /opt/myapp/bin/bar
● /opt/myapp/bin/foo

Packaging third party COTS software

● So in this case, we see that the following files have
been added to the system or modified:

● /opt/myapp/lib
● /opt/myapp/lib/libbar.so
● /opt/myapp/lib/libbaz.so
● /opt/myapp/lib/libfoo.so

● /opt/myapp/sbin
● /opt/myapp/sbin/baz

Packaging third party COTS software

● Look for any files which will need to be customized
● Inspect /etc/profile

Packaging third party COTS software

● Look for any files which will need to be customized
● The only one of these which might change from system

to system is the config file, /etc/foo.conf

Packaging third party COTS software

● For now, just remember that the config file has settings
which will need to be changed from host to host.

Packaging third party COTS software

● For now, just remember that the config file has settings
which will need to be changed from host to host.

● Remember config file macros in RHN Satellite...?

Packaging third party COTS software

● Create a directory called [app]-[version].[release]
● For instance, ~/myapp­1.0

● Copy the installed software into this directory. Can be
hierarchical or just dumped into the directory, but
hierarchical is more human recognizable. The directory
you create will be the “root” of the RPM.

Packaging third party COTS software

● Since we don't want to modify the system-provided
/etc/profile, we'll create a script to go in
/etc/profile.d called foo.sh and add it to our
tree:

Packaging third party COTS software

● Create a tar.gz or tar.bz2 file from this directory. The
name should be something like:

● [name]­[version].[build].tar.gz or

● [name]­[version].[build].tgz or

● [name]­[version].[build].tar.bz2

Packaging third party COTS software

● Now that you've created the tarball, put it where a non-
root user can get it. Make sure the non-root user can
read it!

Packaging third party COTS software

● Make sure you have the “Development tools” package
group installed. For convenience sake, we recommend
you also install the rpmdevtools package

● As a non-root user, create your RPM build tree using
rpmdev-setuptree

Packaging third party COTS software

● Copy the tarball into your ~/rpmbuild/SOURCES
directory

Packaging third party COTS software

● Change your ~/rpmbuild/SPECS directory and
create a spec file

● rpmdev­newspec [name]

Packaging third party COTS software

● In this case, we want to setup and prep, but we do not
want to ./configure or make or make DESTDIR
install.

● We also do not want to strip the binaries of debug
symbols – they may have been compiled and/or
stripped in a non-GNU tools environment and we could
break them.

Packaging third party COTS software

● Sign your packages with gpg as described previously.

And That's It!

● You've gotten a glimpse into how to package from
source and with COTS binaries!

Thank you!

● If you liked today's presentation, please let us know!

● Thomas's contact info:
● thomas@redhat.com
● choirboy on #rhel on Freenode
● thomasdcameron on Twitter
● http://people.redhat.com/tcameron
● http://excogitat.us

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149

