
Broken Linux 
Performance 
Tools 
Brendan Gregg 
Senior Performance Architect, Netflix 

Jan	  2016	  



Previously (SCaLE11x) 

Working Linux performance tools: 



This Talk (SCaLE14x) 

Broken Linux performance tools: 
 
 
 
 
 
Objectives: 

–  Bust assumptions about tools and metrics 
–  Learn how to verify and find missing metrics 
–  Avoid the common mistakes when benchmarking 

Note: Current software is discussed, which could be fixed in the future (by you!) 

Benchmarking Observability 





OBSERVABILITY 

Load Averages top %CPU iowait vmstat 

Overhead strace Java Profilers Monitoring 



LOAD AVERAGES 



Load Averages (1, 5, 15 min) 

•  "load" 
–  Usually CPU demand (run queue length/latency) 
–  On Linux: CPU + uninterruptible I/O (e.g., disk) 

•  "average" 
–  Exponentially damped moving sum 

•  "1, 5, and 15 minutes" 
–  Constants used in the equation 

•  Don't study these for longer than 10 seconds 

$ uptime
 22:08:07 up  9:05,  1 user,  load average: 11.42, 11.87, 12.12



t=0 
Load begins 
(1 thread) 

1 

5 

15 

@ 1 min: 
1 min avg =~ 0.62 



TOP %CPU 



top %CPU 

•  Who is consuming CPU? 
•  And by how much? 

$ top - 20:15:55 up 19:12,  1 user,  load average: 7.96, 8.59, 7.05
Tasks: 470 total,   1 running, 468 sleeping,   0 stopped,   1 zombie
%Cpu(s): 28.1 us, 0.4 sy, 0.0 ni, 71.2 id, 0.0 wa, 0.0 hi, 0.1 si, 0.1 st
KiB Mem:  61663100 total, 61342588 used,   320512 free,     9544 buffers
KiB Swap:        0 total,        0 used,        0 free.  3324696 cached Mem

  PID USER      PR  NI    VIRT    RES   SHR S  %CPU %MEM    TIME+ COMMAND
11959 apiprod   20   0 81.731g 0.053t 14476 S 935.8 92.1 13568:22 java
12595 snmp      20   0   21240   3256  1392 S   3.6  0.0  2:37.23 snmp-pass
10447 snmp      20   0   51512   6028  1432 S   2.0  0.0  2:12.12 snmpd
18463 apiprod   20   0   23932   1972  1176 R   0.7  0.0  0:00.07 top
[…]



top: Missing %CPU 

•  Short-lived processes can be missing entirely 
–  Process creates and exits in-between sampling /proc. 

e.g., software builds. 
–  Try atop(1), or sampling using perf(1) 

•  Short-lived processes may vanish on screen updates 
–  I often use pidstat(1) on Linux instead, for concise scroll back 



top: Misinterpreting %CPU 

•  Different top(1)s use different calculations 
-  On different OSes, check the man page, and run a test! 

•  %CPU can mean: 
–  A) Sum of per-CPU percents (0-Ncpu x 100%) consumed 

during the last interval 
–  B) Percentage of total CPU capacity (0-100%) consumed 

during the last interval 
–  C) (A) but historically damped (like load averages) 
–  D) (B) " " " 



top: %Cpu vs %CPU 

•  This 4 CPU system is consuming: 
–  130% total CPU, via %Cpu(s) 
–  190% total CPU, via %CPU 

•  Which one is right? Is either? 
–  "A man with one watch knows the time; with two he's never sure" 

$ top - 15:52:58 up 10 days, 21:58, 2 users, load average: 0.27, 0.53, 0.41
Tasks: 180 total,   1 running, 179 sleeping,   0 stopped,   0 zombie
%Cpu(s):  1.2 us, 24.5 sy, 0.0 ni, 67.2 id, 0.2 wa, 0.0 hi, 6.6 si, 0.4 st
KiB Mem:   2872448 total,  2778160 used,    94288 free,    31424 buffers
KiB Swap:  4151292 total,       76 used,  4151216 free.  2411728 cached Mem

  PID USER     PR  NI    VIRT   RES  SHR S  %CPU %MEM     TIME+ COMMAND                                                                                              
12678 root     20   0   96812  1100  912 S 100.4  0.0   0:23.52 iperf                                                                                                
12675 root     20   0  170544  1096  904 S  88.8  0.0   0:20.83 iperf                                                                                                
  215 root     20   0       0     0    0 S   0.3  0.0   0:27.73 jbd2/sda1-8                                                                                          
[…]



CPU Summary Statistics 

•  %Cpu row is from /proc/stat 
•  linux/Documentation/cpu-load.txt: 

•  /proc/stat is used by everything for CPU stats 

In most cases the `/proc/stat' information reflects  
the reality quite closely, however due to the nature  
of how/when the kernel collects this data  
sometimes it can not be trusted at all.



%CPU 



What is %CPU anyway? 

•  "Good" %CPU: 
–  Retiring instructions (provided they aren't a spin loop) 
–  High IPC (Instructions-Per-Cycle) 

•  "Bad" %CPU: 
–  Stall cycles waiting on resources, usually memory I/O 
–  Low IPC 
–  Buying faster processors may make little difference 

•  %CPU alone is ambiguous 
–  Would love top(1) to split %CPU into cycles retiring vs stalled 
–  Although, it gets worse… 



CPU Speed Variation 

•  Clock speed can vary thanks to: 
–  Intel Turbo Boost: by hardware, based on power, temp, etc 
–  Intel Speed Step: by software, controlled by the kernel 

•  %CPU is still ambiguous, given IPC 

•  Need to know the clock speed as well 
–  80% CPU (@3000MHz) != 4 x 20% CPU (@1600MHz) 

•  CPU counters nowadays have "reference cycles" 

80%	  CPU	  
(1.6	  IPC)	  

4	  x	  20%	  CPU	  
(1.6	  IPC)	  

may	  not	  
==	  



Out-of-order Execution 

•  CPUs execute uops out-of-
order and in parallel across 
multiple functional units 

•  %CPU doesn't account for 
how many units are active 

•  Accounting each cycles as 
"stalled" or “retiring" is a 
simplification 

h:ps://upload.wikimedia.org/wikipedia/commons/6/64/Intel_Nehalem_arch.svg	  



I/O WAIT 



I/O Wait 

•  Suggests system is disk I/O bound, but often misleading 
•  Comparing I/O wait between system A and B: 

-  higher might be bad: slower disks, more blocking 
-  lower might be bad: slower processor and architecture 

consumes more CPU, obscuring I/O wait 
•  Can be very useful when understood: another idle state 

$ mpstat -P ALL 1
08:06:43 PM  CPU   %usr  %nice   %sys %iowait   %irq  %soft %steal %guest  %idle
08:06:44 PM  all  53.45   0.00   3.77    0.00   0.00   0.39   0.13   0.00  42.26
[…]



I/O Wait Venn Diagram 

"CPU"	   "I/O Wait"	  "CPU"	  

"Idle"	  

CPU	   Waiting for disk I/O	  

Per CPU:	  



FREE MEMORY 



Free Memory 

•  "free" is near-zero: I'm running 
out of memory! 
-  No, it's in the file system cache, 

and is still free for apps to use 
•  Linux free(1) explains it, but 

other tools, e.g. vmstat(1), don't 
•  Some file systems (e.g., ZFS) 

may not be shown in the 
system's cached metrics at all 

www.linuxatemyram.com	  

$ free -m
             total       used       free     shared    buffers     cached
Mem:          3750       1111       2639          0        147        527
-/+ buffers/cache:        436       3313
Swap:            0          0          0	  



VMSTAT 



vmstat(1) 

•  Linux: first line has some summary since boot values — 
confusing! 

•  This system-wide summary is missing networking 

$ vmstat –Sm 1
procs -----------memory---------- ---swap-- -----io---- -system-- ----cpu----
 r  b   swpd   free   buff  cache   si   so    bi    bo   in   cs us sy id wa
 8  0      0   1620    149    552    0    0     1   179   77   12 25 34  0  0
 7  0      0   1598    149    552    0    0     0     0  205  186 46 13  0  0
 8  0      0   1617    149    552    0    0     0     8  210  435 39 21  0  0
 8  0      0   1589    149    552    0    0     0     0  218  219 42 17  0  0
[…]	  



NETSTAT -S 



netstat -s 
$ netstat -s
Ip:
    7962754 total packets received
    8 with invalid addresses
    0 forwarded
    0 incoming packets discarded
    7962746 incoming packets delivered
    8019427 requests sent out
Icmp:
    382 ICMP messages received
    0 input ICMP message failed.
    ICMP input histogram:
        destination unreachable: 125
        timeout in transit: 257
    3410 ICMP messages sent
    0 ICMP messages failed
    ICMP output histogram:
        destination unreachable: 3410
IcmpMsg:
        InType3: 125
        InType11: 257
        OutType3: 3410
Tcp:
    17337 active connections openings
    395515 passive connection openings
    8953 failed connection attempts
    240214 connection resets received
    3 connections established
    7198375 segments received
    7504939 segments send out
    62696 segments retransmited
    10 bad segments received.
 1072 resets sent
    InCsumErrors: 5
Udp:
    759925 packets received
    3412 packets to unknown port received.
    0 packet receive errors
    784370 packets sent
UdpLite:
TcpExt:
    858 invalid SYN cookies received
    8951 resets received for embryonic SYN_RECV sockets
    14 packets pruned from receive queue because of socket buffer overrun
    6177 TCP sockets finished time wait in fast timer
    293 packets rejects in established connections because of timestamp
    733028 delayed acks sent
    89 delayed acks further delayed because of locked socket
    Quick ack mode was activated 13214 times
    336520 packets directly queued to recvmsg prequeue.
    43964 packets directly received from backlog
    11406012 packets directly received from prequeue
    1039165 packets header predicted
    7066 packets header predicted and directly queued to user

    1428960 acknowledgments not containing data received
    1004791 predicted acknowledgments
    1 times recovered from packet loss due to fast retransmit
    5044 times recovered from packet loss due to SACK data
    2 bad SACKs received
    Detected reordering 4 times using SACK
    Detected reordering 11 times using time stamp
    13 congestion windows fully recovered
    11 congestion windows partially recovered using Hoe heuristic 
    TCPDSACKUndo: 39
    2384 congestion windows recovered after partial ack
    228 timeouts after SACK recovery
    100 timeouts in loss state
    5018 fast retransmits
    39 forward retransmits
    783 retransmits in slow start
    32455 other TCP timeouts
    TCPLossProbes: 30233
    TCPLossProbeRecovery: 19070
    992 sack retransmits failed
    18 times receiver scheduled too late for direct processing
    705 packets collapsed in receive queue due to low socket buffer
    13658 DSACKs sent for old packets
    8 DSACKs sent for out of order packets
    13595 DSACKs received
    33 DSACKs for out of order packets received
    32 connections reset due to unexpected data
    108 connections reset due to early user close
    1608 connections aborted due to timeout
    TCPSACKDiscard: 4
    TCPDSACKIgnoredOld: 1
    TCPDSACKIgnoredNoUndo: 8649
    TCPSpuriousRTOs: 445
    TCPSackShiftFallback: 8588
    TCPRcvCoalesce: 95854
    TCPOFOQueue: 24741
    TCPOFOMerge: 8
    TCPChallengeACK: 1441
    TCPSYNChallenge: 5
    TCPSpuriousRtxHostQueues: 1
    TCPAutoCorking: 4823
IpExt:
    InOctets: 1561561375
    OutOctets: 1509416943
    InNoECTPkts: 8201572
    InECT1Pkts: 2
    InECT0Pkts: 3844
    InCEPkts: 306



netstat -s 

•  Many metrics on Linux (can be over 200) 
•  Still doesn't include everything: getting better, but don't 

assume everything is there 
•  Includes typos & inconsistencies 

•  Might be more readable to: 
cat /proc/net/snmp /proc/net/netstat

•  Totals since boot can be misleading 
•  On Linux, -s needs -c support 

•  Often no documentation outside kernel source code 
•  Requires expertise to comprehend 



DISK METRICS 



Disk Metrics 

•  All disk metrics are misleading 
•  Disk %utilization / %busy 

–  Logical devices (volume managers) and individual disks can 
process I/O in parallel, and may accept more I/O at 100% 

•  Disk IOPS 
–  High IOPS is "bad"? That depends… 

•  Disk latency 
–  Does it matter? File systems and volume managers try hard 

to hide latency and make it asynchronous 
–  Better measuring latency via application->FS calls 



FS CACHE METRICS 



FS Cache Metrics  

•  Size metrics exist: free -m 
•  Activity metrics are missing: e.g., hit/miss ratio 
•  Hacking stats using ftrace (/eBPF): 
# ./cachestat 1
Counting cache functions... Output every 1 seconds.
    HITS   MISSES  DIRTIES    RATIO   BUFFERS_MB   CACHE_MB
     210      869        0    19.5%            2        209
     444     1413        0    23.9%            8        210
     471     1399        0    25.2%           12        211
     403     1507        3    21.1%           18        211
     967     1853        3    34.3%           24        212
[...]



What You Can Do 

•  Verify and understand existing metrics 
–  Even %CPU can be misleading 
–  Cross check with another tool & backend 
–  Test with known workloads 
–  Read the source, including comments 
–  Use "known to be good" metrics to sanity test others 

•  Find missing metrics 
–  Follow the USE Method, and other methodologies 
–  Draw a functional diagram 

•  Burn it all down and start again from scratch? 



PROFILERS 



Linux perf

•  Can sample stack traces and summarize output: 
# perf report -n -stdio
[…]
# Overhead       Samples  Command      Shared Object                         Symbol
# ........  ............  .......  .................  .............................
#
    20.42%           605     bash  [kernel.kallsyms]  [k] xen_hypercall_xen_version      
               |
               --- xen_hypercall_xen_version
                   check_events
                  |          
                  |--44.13%-- syscall_trace_enter
                  |          tracesys
                  |          |          
                  |          |--35.58%-- __GI___libc_fcntl
                  |          |          |          
                  |          |          |--65.26%-- do_redirection_internal
                  |          |          |          do_redirections
                  |          |          |          execute_builtin_or_function
                  |          |          |          execute_simple_command
[… ~13,000 lines truncated …]



Too Much Output 



… as a Flame Graph 



PROFILER VISIBILITY 



Java Profilers 

Java (+object stats) 

GC 

Kernel, 
libraries, 
JVM 

CPU Flame Graph 



Java Profilers 

•  Typical problems: 
–  Sampling at safepoints (skew) 
–  Method tracing observer effect 
–  RUNNING != on-CPU (e.g., epoll) 
–  Missing GC or JVM CPU time 

•  Inaccurate (skewed) and incomplete profiles 
•  Let's try a system profiler? 



System Profilers with Java (x86) 

Java 
(missing 
stacks & 
symbols) 

Kernel 
TCP/IP 

GC 

Idle 
thread Time 

Locks epoll JVM 

compiler 
optimization 

#fail 



COMPILER OPTIMIZATIONS 



Broken System Stack Traces 

•  Broken stacks (1 
or 2 levels deep, 
junk values): 

•  On x86 (x86_64), 
hotspot reuses 
the frame pointer 
register (RBP) as general purpose (a "compiler 
optimization"), which once upon a time made sense 

•  gcc has -fno-omit-frame-pointer to avoid this 
–  JDK8u60+ now has this as -XX:+PreserveFramePoiner 

# perf record –F 99 –a –g – sleep 30; perf script
[…]
java  4579 cpu-clock: 
  ffffffff8172adff tracesys ([kernel.kallsyms])
      7f4183bad7ce pthread_cond_timedwait@@GLIBC_2…

java  4579 cpu-clock: 
      7f417908c10b [unknown] (/tmp/perf-4458.map)

java  4579 cpu-clock: 
      7f4179101c97 [unknown] (/tmp/perf-4458.map)



•  Missing symbols may show up as hex; e.g., Linux perf: 

•  For applications, install debug symbol package 
•  For JIT'd code, Linux perf already looks for an 

externally provided symbol file: /tmp/perf-PID.map 
–  Find a way to do this for your runtime 

Missing Symbols 

# perf script
Failed to open /tmp/perf-8131.map, continuing without symbols
[…]
java 8131 cpu-clock: 
    7fff76f2dce1 [unknown] ([vdso])
    7fd3173f7a93 os::javaTimeMillis() (/usr/lib/jvm…
    7fd301861e46 [unknown] (/tmp/perf-8131.map)
[…]



INSTRUCTION PROFILING 



Instruction Profiling 
# perf annotate -i perf.data.noplooper --stdio
 Percent |  Source code & Disassembly of noplooper
----------------------------------------------------
         :  Disassembly of section .text:
         :
         :  00000000004004ed <main>:
    0.00 :    4004ed:   push  %rbp
    0.00 :    4004ee:   mov   %rsp,%rbp
   20.86 :    4004f1:   nop
    0.00 :    4004f2:   nop
    0.00 :    4004f3:   nop
    0.00 :    4004f4:   nop
   19.84 :    4004f5:   nop
    0.00 :    4004f6:   nop
    0.00 :    4004f7:   nop
    0.00 :    4004f8:   nop
   18.73 :    4004f9:   nop
    0.00 :    4004fa:   nop
    0.00 :    4004fb:   nop
    0.00 :    4004fc:   nop
   19.08 :    4004fd:   nop
    0.00 :    4004fe:   nop
    0.00 :    4004ff:   nop
    0.00 :    400500:   nop
   21.49 :    400501:   jmp    4004f1 <main+0x4>

•  Often broken nowadays due to 
skid, out-of-order execution, and 
sampling the resumption instruction 

•  Better with PEBS support 



What You Can Do 

•  Do stack trace profiling 
–  Get stack traces to work 
–  Get symbols to work 
–  This all may be a lot of work. It's worth it! 

•  Make CPU flame graphs! 



OVERHEAD 



tcpdump 

•  Packet tracing doesn't scale. Overheads: 
–  CPU cost of per-packet tracing (improved by [e]BPF) 

•  Consider CPU budget per-packet at 10/40/100 GbE 
–  Transfer to user-level (improved by ring buffers) 
–  File system storage (more CPU, and disk I/O) 
–  Possible additional network transfer 

•  Can also drop packets when overloaded 
•  You should only trace send/receive as a last resort 

–  I solve problems by tracing lower frequency TCP events 

$ tcpdump -i eth0 -w /tmp/out.tcpdump
tcpdump: listening on eth0, link-type EN10MB (Ethernet), capture size 65535 bytes
^C7985 packets captured
8996 packets received by filter
1010 packets dropped by kernel



STRACE 



strace 

•  Before: 

 
•  After: 
 

•  442x slower. This is worst case. 
•  strace(1) pauses the process twice for each syscall. 

This is like putting metering lights on your app. 
–  "BUGS: A traced process runs slowly." – strace(1) man page 

$ dd if=/dev/zero of=/dev/null bs=1 count=500k
[…]
512000 bytes (512 kB) copied, 0.103851 s, 4.9 MB/s

$ strace -eaccept dd if=/dev/zero of=/dev/null bs=1 count=500k
[…]
512000 bytes (512 kB) copied, 45.9599 s, 11.1 kB/s



PERF_EVENTS 



perf_events 

•  Buffered tracing helps, but you can still trace too much: 

•  Overhead = event instrumentation cost  X  event frequency 
•  Costs 

–  Higher: event dumps (perf.data), stack traces, copyin/outs 
–  Lower: counters, in-kernel aggregations (ftrace, eBPF) 

•  Frequencies 
–  Higher: instructions, scheduler, malloc/free, Java methods 
–  Lower: process creation & destruction, disk I/O (usually) 

# perf record -e sched:sched_switch -a -g -- sleep 1
[ perf record: Woken up 3 times to write data ]
[ perf record: Captured and wrote 100.212 MB perf.data (486550 samples) ]



VALGRIND 



Valgrind 

•  A suite of tools including an extensive leak detector 

 
•  To its credit it does warn the end user 

"Your	  program	  will	  run	  much	  slower	  
(eg.	  20	  to	  30	  Omes)	  than	  normal"	  
	  
–	  h:p://valgrind.org/docs/manual/quick-‐start.html	  



JAVA PROFILERS 



Java Profilers 

•  Some Java profilers have two modes: 
–  Sampling stacks: eg, at 100 Hertz 
–  Tracing methods: instrumenting and timing every method 

•  Method timing has been described as "highly accurate", 
despite slowing the target by up to 1000x! 

•  For more about Java profiler issues, see Nitsan Wakart's 
QCon2015 talk "Profilers are Lying Hobbitses" 



What You Can Do 

•  Understand how the profiler works 
–  Measure overhead 
–  Know the frequency of instrumented events 

•  Use in-kernel summaries (ftrace, eBPF) 
–  < 10,000 events/sec, probably ok 
–  > 100,000 events/sec, overhead may start to be measurable 



MONITORING 



Monitoring 

•  By now you should recognize these pathologies: 
–  Let's just graph the system metrics! 

•  That's not the problem that needs solving 
–  Let's just trace everything and post process! 

•  Now you have one million problems per second 

•  Monitoring adds additional problems: 
–  Let's have a cloud-wide dashboard update per-second! 

•  From every instance? Packet overheads? 
–  Now we have billions of metrics! 



STATISTICS 
"Then	  there	  is	  the	  man	  
who	  drowned	  crossing	  

a	  stream	  with	  an	  
average	  depth	  
of	  six	  inches."	  	  	  

–	  	  
W.I.E.	  Gates	  



Statistics 

•  Averages can be misleading 
–  Hide latency outliers 
–  Per-minute averages can hide multi-second issues 

•  Percentiles can be misleading 
–  Probability of hitting 99.9th latency may be more than 1/1000 

after many dependency requests 
•  Show the distribution: 

–  Summarize: histogram, density plot, frequency trail 
–  Over-time: scatter plot, heat map 



Average Latency 

•  When the index of central tendency isn't… 



VISUALIZATIONS 



Traffic Lights 

RED == bad, GREEN == good 

…misleading for subjective metrics 
Better suited for objective metrics 



Tachometers 

…especially with arbitrary color highlighting 



Pie Charts 

…for real-time metrics 

usr	   sys	   wait	   idle	  



What You Can Do 

•  Monitoring: 
–  Verify metrics, test overhead (same as tools) 

•  Statistics: 
–  Ask how is this calculated? 
–  Study the full distribution 

•  Visualizations: 
–  Use histograms, heat maps, flame graphs 



BENCHMARKING 

Benchmarks Common Mistakes Micro 

Macro Kitchen-Sink bonnie++ Apache Bench 



BENCHMARKS 



~100% of Benchmarks are Wrong 

•  "Most popular benchmarks are flawed" 
–  Traeger, A., E. Zadok, N. Joukov, and C. Wright. "A Nine Year Study of File 

System and Storage Benchmarking," ACM Transactions on Storage, 2008. 

•  All alternates can also be flawed 



COMMON MISTAKES 



Common Mistakes 

1.  Testing the wrong target 
–  eg, FS cache instead of disk; misconfiguration 

2.  Choosing the wrong target 
–  eg, disk instead of FS cache … doesn’t resemble real world 

3.  Invalid results 
–  benchmark software bugs 

4.  Ignoring errors 
–  error path may be fast! 

5.  Ignoring variance or perturbations 
–  real workload isn't steady/consistent, which matters 

6.  Misleading results 
–  Casual benchmarking: you benchmark A, but actually 

measure B, and conclude you measured C 



MICRO BENCHMARKS 



Micro Benchmarks 

•  Test a specific function in isolation. e.g.: 
–  File system maximum cached read ops/sec 
–  Network maximum throughput 

•  Examples of bad microbenchmarks: 
–  gitpid() in a tight loop 
–  speed of /dev/zero and /dev/null 

•  Common problems: 
–  Testing a workload that is not very relevant 
–  Missing other workloads that are relevant 



MACRO BENCHMARKS 



Macro Benchmarks 

•  Simulate application user load. e.g.: 
–  Simulated web client transaction 

•  Common problems: 
–  Misplaced trust: believed to be realistic, but misses variance, 

errors, perturbations, etc. 
–  Complex to debug, verify, and root cause 



KITCHEN SINK BENCHMARKS 



Kitchen Sink Benchmarks 

•  Run everything! 
–  Mostly random benchmarks found on the Internet, where 

most are are broken or irrelevant 
–  Developers focus on collecting more benchmarks than 

verifying or fixing the existing ones 
•  Myth that more benchmarks == greater accuracy 

–  No, use active benchmarking (analysis) 



BONNIE++ 



bonnie++ 

•  "simple tests of hard drive and file system performance" 
•  First metric printed: per character sequential output 
•  What I found it actually tested: 

–  1 byte writes to libc (via putc()) 

–  4 Kbyte writes from libc -> FS (depends on OS; see setbuffer()) 

–  128 Kbyte async writes to disk (depends on storage stack) 

–  Any file system throttles that may be present (eg, ionice) 

–  C++ code, to some extent (bonnie++ 10% slower than Bonnie) 

•  Actual limiter: 
–  Single threaded write_block_putc() and putc() calls 

•  Now thankfully fixed 



APACHE BENCH 



Apache Bench 

•  HTTP web server benchmark 
•  Single thread limited (use wrk for multi-threaded) 
•  Keep-alive option (-k): 

–  without: Can become an unrealistic TCP session benchmark 
–  with: Can become an unrealistic server throughput test 

•  Performance issues of ab's own code 



UNIXBENCH 



UnixBench 

•  The original kitchen-sink micro benchmark from 1984, 
published in BYTE magazine 

•  Results summarized as "The BYTE Index". Including: 

•  Many problems, starting with… 

 system:
    dhry2reg         Dhrystone 2 using register variables
    whetstone-double Double-Precision Whetstone
    syscall          System Call Overhead
    pipe             Pipe Throughput
    context1         Pipe-based Context Switching
    spawn            Process Creation
    execl            Execl Throughput
    fstime-w         File Write 1024 bufsize 2000 maxblocks
    fstime-r         File Read 1024 bufsize 2000 maxblocks
    fstime           File Copy 1024 bufsize 2000 maxblocks
    fsbuffer-w       File Write 256 bufsize 500 maxblocks
    fsbuffer-r       File Read 256 bufsize 500 maxblocks
    fsbuffer         File Copy 256 bufsize 500 maxblocks
    fsdisk-w         File Write 4096 bufsize 8000 maxblocks
[…]



UnixBench Makefile 

•  Default (by ./Run) for Linux. Would you edit it? Then what? 
•  I "fixed" it and "improved" Dhrystone 2 performance by 64% 
## Very generic
#OPTON = -O

## For Linux 486/Pentium, GCC 2.7.x and 2.8.x
#OPTON = -O2 -fomit-frame-pointer -fforce-addr -fforce-mem -ffast-math \
#  -m486 -malign-loops=2 -malign-jumps=2 -malign-functions=2

## For Linux, GCC previous to 2.7.0
#OPTON = -O2 -fomit-frame-pointer -fforce-addr -fforce-mem -ffast-math -m486

#OPTON = -O2 -fomit-frame-pointer -fforce-addr -fforce-mem -ffast-math \
#  -m386 -malign-loops=1 -malign-jumps=1 -malign-functions=1

## For Solaris 2, or general-purpose GCC 2.7.x
OPTON = -O2 -fomit-frame-pointer -fforce-addr -ffast-math -Wall

## For Digital Unix v4.x, with DEC cc v5.x
#OPTON = -O4
#CFLAGS = -DTIME -std1 -verbose -w0



UnixBench Documentation 

 
"The results will depend not only on your 
hardware, but on your operating system, 

libraries, and even compiler."

"So you may want to make sure that all your 
test systems are running the same version of 

the OS; or at least publish the OS and 
compuiler versions with your results."

… UnixBench was innovative & useful, but it's time has passed 



What You Can Do 

•  Match the benchmark to your workload 
•  Active Benchmarking 

1.  Configure the benchmark to run in steady state, 24x7 
2.  Do root-cause analysis of benchmark performance 
3.  Answer: why X and not 10X? Limiting factor? 
It can take 1-2 weeks to debug a single benchmark 



 
 

Summary 



Observe Everything 

•  Trust nothing. Verify. Write small tests. 
•  Pose Q's first then find the metrics. e.g., functional diagrams: 

Reference: http://www.brendangregg.com/linuxperf.html  



•  e.g., Java Mixed-Mode Flame Graphs: 

Profile Everything 

Java 
JVM 

Kernel 

GC 

Reference: http://www.brendangregg.com/linuxperf.html  



Visualize Everything 

•  Full distributions of latency. e.g., heat maps: 

Reference: http://queue.acm.org/detail.cfm?id=1809426  



 
 

Benchmark Nothing! 
 

(if you must, use Active Benchmarking) 



Links & References 

•  Things that aren't broken: 
–  http://www.brendangregg.com/linuxperf.html 

•  References: 
–  https://upload.wikimedia.org/wikipedia/commons/6/64/Intel_Nehalem_arch.svg 
–  http://www.linuxatemyram.com/ 
–  Traeger, A., E. Zadok, N. Joukov, and C. Wright. “A Nine Year Study of File System 

and Storage Benchmarking,” ACM Trans- actions on Storage, 2008. 
–  http://www.brendangregg.com/blog/2014-06-09/java-cpu-sampling-using-hprof.html 
–  http://www.brendangregg.com/activebenchmarking.html 
–  https://blogs.oracle.com/roch/entry/decoding_bonnie 
–  http://www.brendangregg.com/blog/2014-05-02/compilers-love-messing-with-

benchmarks.html 
–  https://code.google.com/p/byte-unixbench/ 
–  https://qconsf.com/sf2015/presentation/how-not-measure-latency 
–  https://qconsf.com/system/files/presentation-slides/profilers_are_lying_hobbitses.pdf  
–  Caution signs drawn be me, inspired by real-world signs 



Thanks 

•  Questions? 
•  http://techblog.netflix.com 
•  http://slideshare.net/brendangregg  
•  http://www.brendangregg.com 
•  bgregg@netflix.com 
•  @brendangregg 

Jan	  2016	  


