
The 5 Stages of
Scale

Christopher Smith

Who am I?

Two decades experience

Half of that in online advertising

Internet systems engineering

Scaling web serving, data collection
& analysis

Places big & small.

Scalability

scale: v.tr.
1. To clear or strip of scale or scales.

2. Weigh a specified weight.

3. Climb up or over (something steep)

0 2 4 6 8

Th
ro

ug
hp

ut

Usage

Your App

0 2 4 6 8
Re

sp
on

si
ve

ne
ss

Usage

Your App

0 2 4 6 8

Th
ro

ug
hp

ut

Usage

Your App Trend

0 2 4 6 8
Re

sp
on

si
ve

ne
ss

Usage

Your App Trend

0 500000 1000000

Th
ro

ug
hp

ut

Usage

Your App
Undeniable Extrapolation

0 500000 1000000
Re

sp
on

si
ve

ne
ss

Usage

Your App Trend

0 500000 1000000

Th
ro

ug
hp

ut

Usage

Your App
Undeniable Extrapolation

0 500000 1000000
Re

sp
on

si
ve

ne
ss

Usage

Your App Trend

Scalability:
Saving This Guy’s Job

Scalability
Envelopes

There is always a “next” bottleneck.

In case of scalability problem...

6 envelopes

Envelope 0

Session partitioning

Commodity: load balancer, multi-*

Linear scale for CPU

Limit: C10K?

Envelope 1
Read Caching

Reverse-proxy

memcached

CDN

log(n) scale: thank you Zipf

Limit: ~200 w/sec

Envelope 2
Get a real persistence framework

Data structures FTW!

DB: concurrent read/write

MOM: queuing/event IO/TP monitors

Cheat on ACID (particularly C & D)

log(n) scale?

1000-10000 w/sec

Tipping over

Scaling Catamaran’s

RAM caching I/O

RAID

Threads (sometimes)

Packet loss (UR DUING IT WRONG)

SSD’s?

Jeff Dean’s Numbers
Latency Comparison Numbers

L1 cache reference 0.5 ns

Branch mispredict 5 ns

L2 cache reference 7 ns 14x L1 cache

Mutex lock/unlock 25 ns

Main memory reference 100 ns 20x L2 cache, 200x L1 cache

Compress 1K bytes with Zippy 3,000 ns

Send 1K bytes over 1 Gbps network 10,000 ns 0.01 ms

Read 4K randomly from SSD* 150,000 ns 0.15 ms

Read 1 MB sequentially from memory 250,000 ns 0.25 ms

Round trip within same datacenter 500,000 ns 0.5 ms

Read 1 MB sequentially from SSD* 1,000,000 ns 1 ms 4X memory

Disk seek 10,000,000 ns 10 ms 20x datacenter roundtrip

Problem: IO latency
Throughput: 2x every 18 months

Latency:
CPU: <2x every 18 months

LAN network: 2x every 2-3 years

Memory: 2x every 3-5 years

Disk: 2x every decade? (SSD?)

WAN Network: 1x every...

Problem IO Latency
Traditional indexes on the wrong side

Turns a scan in to a seek

Index lookup: scan 0.1% of records + 1
random seek

Scan: scan 100% of records, 0 random seek

Seek is 10ms & Scan is 100Hz -> 10x win

Seek is 1ms & Scan is 1GHz -> 1000x loss

Envelope 3

Real partitioning of IO

Move code, not data

Commodities: Map/Reduce (Hadoop), DHT
(Cassandra, HBase, Riak)

CAP Theory limiting sync’ing

Envelope 4

Route new data through data
partitions

Using MOM/EventIO “the right way”

ESP/CEP: Eigen, Storm, Esper,
StreamBase, 0mq, etc.

Envelope 5

Cheat more on reliability.
UDP w/o reliability > TCP

Measure loss vs. prevent loss

Horseshoes, hand grenades,
features...?

Integrated Systems
Combined IO management solutions:

real-time memory key/value lookup

LSM + bitmap indexes + etc.

eventual consistency

mobile code for batch processing

Cassandra, HBase, etc.

Efficient Logging

Events in efficient machine parseable
form: (protobuf, thrift, etc.)

Event source writes only to NIC

UDP Multicast

Redundant listeners

message LogEvent {

required uint64 pid = 1;

optional uint64 tid = 2;

optional uint64 sid = 4;

required uint64 sequence = 5;

required uint64 timestamp = 6;

enum Level { PANIC = 0, ERROR = 1..}

required Level level = 7;

required bytes payload = 8;

}

Announcements

Dedicated channel.

Payload: channel IP, channel port,
last seq, pid, tid, sid + stats

All announcers listen and self-
throttle.

Directory service accumulates

Consolidation

Redundant journalers (RAID)

ESP: detect loss in real time window

If necessary, Map/Reduce processing
to try to resolve partial loss.

Efficiency
Hundreds of nodes

>50MB/sec

>50,000 pps

3-4 “journalers” resolving data

>5TB reconciled data a day

<0.1% data loss

Envelope 6

Take out 6 envelopes...

