
Control of major resources in
cgroup v2

Tejun Heo, Facebook

Comprehensive hierarchical control of all significant resource
consumptions in the system.

Resource domains

Resource domains
● A resource domain is what contains actual resource consumptions.

● All resource consumptions - be that CPU cycles, memory allocations or IOs, are

accounted to and controlled by a resource domain.

● Resource domains can’t be nested. Every resource domain is terminal.

Resource domains
Roughly, leaf cgroups are resource

domains which contain processes and

resource consumptions while the

internal cgroups organize and

distribute resources across the resource

domains.

Account for and control operations which span multiple resource
types.

$ free -m
 total used free shared buff/cache available
Mem: 7862 3233 401 1779 4227 2488
Swap: 8191 1 8190

$ sysctl -a |grep vm.dirty_
vm.dirty_background_bytes = 0
vm.dirty_background_ratio = 10
vm.dirty_bytes = 0
vm.dirty_expire_centisecs = 3000
vm.dirty_ratio = 20
vm.dirty_writeback_centisecs = 1500

Always have unambiguous resource config.

Resource distribution config models
● Weights

“.weight”, work-conserving proportional distribution.

● Limits

“.max” or “.high”, upper limit specified in absolute quantity.

may or may not be work-conserving.

● Protections

“.low” or “.min”, the opposite of limits.

Work-conserving.

● Allocations

Like limits but hard allocations.

memory
● Limits and protections.

○ memory.low

○ memory.high

○ memory.max

● Covers most significant consumptions including fs caches and network buffers.

● Co-operates with io to control writeback.

● Pressure measurement in the works.

Memory pressure measurement
● Nobody really had it. Sizing always has been through trial-and-error.

● It’s hard. thikk of cp.

● Gets more painful with segmented memory domains.

● Why we had frequent OOMs and userland handlers in cgroup v1.

What we’re implementing.

● Canonical time based measurement of memory pressure.

● “Was everyone blocked on memory?”

● Also, “Was anyone blocked on memory?”

io
● Weights implemented by cfq.

○ Kinda problematic.

○ May be replaced by bfq.

○ Unlikely to be useable with high-iops devices.

● Limits implemented by blk-throttle.

○ io.max is not work-conserving.

○ io.high is in the works. This will be difficult to configure but useable for high-iops devices.

○ Not unusably slow but not super efficient either.

● Works with memory to control writeback IOs.

cpu
Not merged yet. Quite a bit of discussions going on with the scheduler people.

● Weights

○ Work-conserving.

○ Not particularly low overhead. Needs to be improved.

● Limits

○ Bandwidth limit.

● Do not cooperate with other controllers or manages anonymous consumptions

yet.

Questions?

