
Using Swagger to tame HTTP/JSON
interfaces

John Billings
billings@yelp.com

Yelp’s Mission:
Connecting people with great

local businesses.

Yelp Stats:
As of Q3 2015

89M 3271%90M

HTTP/JSON is amazing!

HAProxy

NGINX

Varnish

Apache
curl

requests

httplib

simplejson

Pyramid

jq

Dropwizard
http://wallakitty.deviantart.com/art/Unicorn-attack-519106761

http://wallakitty.deviantart.com/art/Unicorn-attack-519106761
http://wallakitty.deviantart.com/art/Unicorn-attack-519106761

HTTP/JSON is amazing!

HAProxy

NGINX

Varnish

Apache
curl

requests

httplib

simplejson

Pyramid

jq

Dropwizard

The website is
down again!

%&*#! I just
pushed the
petstore service!

The pet resource
takes a string,
right?

No, I told you,
it’s an int!

Curse you and
your strings!

If only there were a
better way to
specify our API?

Option 1: Write spec docs

Option 1: Write spec docs

✓ It’s easy to get started
✓ People can comment if you use e.g. gdocs
✓ Approachable by non-technical individuals

✗ Implementation and spec can drift over time
✗ It’s easy to be imprecise

Option 2: Switch to Thrift / Protocol Buffers /
Avro / ...

namespace java ns

namespace py ns

typedef i32 int

service MultiplicationService

{

 int multiply(1:int n1, 2:int n2),
}

✓ More efficient on the wire
✓ More efficient to decode than JSON

✗ Cannot use L7 technologies such as HTTP caching
✗ Difficult to debug on the wire
✗ Variable quality of support across languages?

Option 2: Switch to Thrift / Protocol Buffers /
Avro / ...

Option 3: Write lots of integration tests

The tests become the de facto spec

“As a client, if I send this request to the service, then I
should get back this response.”

✓ You should already have (some) of these tests

✗ Final testing phase; slow to correct bugs at this stage
✗ Integration tests take a (relatively) long time to run
✗ Overall, probably only want to have a few of these?

Option 3: Write lots of integration tests

Option 4: Write client libraries

The client library API becomes the spec for consumers

✓ Consumers don’t need to worry about wire protocol
✓ We’ve used this approach at Yelp, and it can work

✗ Lots of boilerplate
✗ Manual validation
✗ No spec for the wire protocol
✗ Still need integration tests from clientlib / service ifc

Option 4: Write client libraries

Or...

• Stick with our existing HTTP/JSON infrastructure
• Invent a machine-readable specification language to

declaratively specify endpoints and return types
• Create tooling to generate client libs from specs
• Create tooling to perform server-side validation

against endpoint specifications
• Create a vibrant open source community :)

http://swagger.io/specification

A brief history of Swagger

• 2011-08-10 Version 1
• 2012-08-22 Version 1.1
• 2014-03-14 Version 1.2

• Formal swagger specification document
• 2014-09-08 Version 2

• Combine Resource Listings and API Declarations
• 2016-01-01 OpenAPI Specification

• Supported by Google, Microsoft, IBM and others

Petstore Try this out!

Top-level Swagger spec

Path
objects

Definition
objects

http://petstore.swagger.io/v2/swagger.yaml

Paths object
path

reference to a definition,
can split across files
if needed

path parameter

parameter object

Another parameter object

Used for /pet/findByStatus endpoint

Definition object

More definition objects: Maps Swagger 2
only

Datatypes and formats

Custom formats

Ignored by Swagger, but some tooling may
allow you to register your own validator

Where do Swagger specs live?

• At Yelp we check them into the service codebase
• Serve from a well-known endpoint of the service
• This minimizes distance between spec and code
• Could also store all specs in a central repo

Modifying specs

• There’s no magic here
• Swagger will not prevent you doing something bad
• You-the-programmer need to make sure that all spec

changes are backwards compatible
• If you like living safely, only add new endpoints
• If you like living dangerously, change some existing

endpoints or remove some endpoints :)

A brief interlude

What's the best thing about UDP jokes?

A brief interlude

What's the best thing about UDP jokes?
I don't care if you get them

A brief interlude

What's the best thing about TCP jokes?

A brief interlude

What's the best thing about TCP jokes?
I get to keep telling them until you get them

A brief interlude

What's the best thing about TCP jokes?

What can I do with a spec?

• Review an API
• Browse other specs
• Generate a client library
• Perform server-side validation
• Testing

API reviews

Browsing specs

Different
services

API for
selected
service

http://swagger.io/swagger-ui/

Perform a real query

Brief aside: Same-origin policy

service_1 service_2swagger_ui

Solution using Cross-Origin Resource
Sharing

service_1 service_2swagger_ui

Access-Control-Allow-Origin:
http://swagger_ui

Solution using a proxy

service_1 service_2swagger_ui

NGINX

Generating client libs
Try this out!

Using generated clientlibs
Try this out!

Bravado: dynamic clientlibs
for Python Try this out!

https://github.com/Yelp/bravado

pyramid_swagger

https://github.com/striglia/pyramid_swagger

pyramid_swagger: usage
Matched in swagger spec

pyramid_swagger: custom formats

Oops!

Oops!

Testing without Swagger

ClientlibClient Service

There could be inconsistencies across both of
these interfaces

Testing with Swagger

Generated
Clientlib

Client Service

There could still be inconsistencies
across these interfaces

Swagger
Spec

This interface is consistent
by construction (*)

Testing with Swagger

Client

• This is a fairly standard testing problem
• Your type-checker can help here (if you have one :)
• Future work: add support for returning mock data

Generated
Clientlib

Testing with Swagger

• Validate your responses as part of your testing
• Fairly easy if your service already contains a validator?
• Could also use an external validator

Swagger
Spec

Service

SwaggerHub

Other spec langs: API Blueprint by Apiary

Other spec langs: I/O Docs by Mashery

Conclusions

• Swagger provides an easy way to define JSON/HTTP
interfaces for new and existing services

• Once you have an interface, you get lots of tooling
‘for free’
• Automatic generation of clientlibs for many

different languages
• Automatic validation of requests and responses

Any questions?

