
Google confidential │ Do not distribute

Google confidential │ Do not distribute

SCALE 13x
Container Management at
Google Scale
Tim Hockin <thockin@google.com>
Senior Staff Software Engineer
@thockin

Google confidential │ Do not distribute

Google confidential │ Do not distribute

SCALE 13x
Container Management at
Google Scale

Container

Tim Hockin <thockin@google.com>
Senior Staff Software Engineer
@thockin

Google confidential │ Do not distribute

 Old Way: Shared machines

kernel

libs

app

app app

No isolation

No namespacing

Common libs

Highly coupled apps and OS

app

Google confidential │ Do not distribute

 Old Way: Virtual machines

Some isolation

Expensive and inefficient

Still highly coupled to the guest OS

Hard to manage
app

libs
kernel

libs

app app

kernel

app

libs

libs
kernel

kernel

Google confidential │ Do not distribute

 New Way: Containers

libs

app

kernel

libs

app

libs

app

libs

app

Google confidential │ Do not distribute

 But what ARE they?

Lightweight VMs
• no guest OS, lower overhead than VMs, but no virtualization hardware

Better packages
• no DLL hell

Hermetically sealed static binaries
• no external dependencies

Provide Isolation (from each other and from the host)
• Resources (CPU, RAM, Disk, etc.)
• Users
• Filesystem
• Network

Google confidential │ Do not distribute

 How?

Implemented by a number of (unrelated) Linux APIs:

• cgroups: Restrict resources a process can consume
• CPU, memory, disk IO, ...

• namespaces: Change a process’s view of the system
• Network interfaces, PIDs, users, mounts, ...

• capabilities: Limits what a user can do
• mount, kill, chown, ...

• chroots: Determines what parts of the filesystem a user can see

Google confidential │ Do not distribute

Google has been developing
and using containers to
manage our applications for
over 10 years.

Images by Connie Zhou

Google confidential │ Do not distribute

Everything at Google runs in
containers:
• Gmail, Web Search, Maps, ...
• MapReduce, batch, ...
• GFS, Colossus, ...
• Even GCE itself: VMs in

containers

Google confidential │ Do not distribute

Everything at Google runs in
containers:
• Gmail, Web Search, Maps, ...
• MapReduce, batch, ...
• GFS, Colossus, ...
• Even GCE itself: VMs in

containers

We launch over 2 billion
containers per week.

Google confidential │ Do not distribute

Why containers?
• Performance

• Repeatability

• Isolation

• Quality of service

• Accounting

• Visibility

• Portability

A fundamentally different way of
managing applications

Images by Connie Zhou

Google confidential │ Do not distribute

 Docker

Source: Google Trends

Google confidential │ Do not distribute

 But what IS Docker?

An implementation of the container idea

A package format

An ecosystem

A company

An open-source juggernaut

A phenomenon

Hoorah! The world is starting to adopt containers!

Google confidential │ Do not distribute

 LMCTFY

Also an implementation of the container idea (from Google)

Also open-source

Literally the same code that Google uses internally

“Let Me Contain That For You”

Google confidential │ Do not distribute

 LMCTFY

Also an implementation of the container idea (from Google)

Also open-source

Literally the same code that Google uses internally

“Let Me Contain That For You”

Probably NOT what you want
to use!

Google confidential │ Do not distribute

 Docker vs. LMCTFY

Docker is primarily about namespacing: control what you can see
• resource and performance isolation were afterthoughts

LMCTFY is primarily about performance isolation: jobs can not hurt each other
• namespacing was an afterthought

Docker focused on making things simple and self-contained
• “sealed” images, a repository of pre-built images, simple tooling

LMCTFY focused on solving the isolation problem very thoroughly
• totally ignored images and tooling

Google confidential │ Do not distribute

 About isolation

Principles:
• Apps must not be able to affect each

other’s perf
• if so it is an isolation failure

• Repeated runs of the same app should
see ~equal perf

• Graduated QoS drives resource
decisions in real-time

• Correct in all cases, optimal in some
• reduce unreliable components

• SLOs are the lingua franca

App 1App 2

Google confidential │ Do not distribute

 Strong isolation

0 2048 4096 6144 8192
Memory (MB)

CPU
(cores)

4

3

2

1

0

Google confidential │ Do not distribute

 Strong isolation

0 2048 4096 6144 8192
Memory (MB)

CPU
(cores)

4

3

2

1

0
RAM=2GB CPU=1.0

Google confidential │ Do not distribute

 Strong isolation

0 2048 4096 6144 8192
Memory (MB)

CPU
(cores)

4

3

2

1

0
RAM=2GB CPU=1.0

RAM=4GB CPU=2.5

Google confidential │ Do not distribute

 Strong isolation

0 2048 4096 6144 8192
Memory (MB)

CPU
(cores)

4

3

2

1

0
RAM=2GB CPU=1.0

RAM=1GB
CPU=0.5

RAM=4GB CPU=2.5

Google confidential │ Do not distribute

 Strong isolation

0 2048 4096 6144 8192
Memory (MB)

CPU
(cores)

4

3

2

1

0
RAM=2GB CPU=1.0

RAM=1GB
CPU=0.5

RAM=4GB CPU=2.5
RAM=1GB

stranded!

Google confidential │ Do not distribute

Pros:
• Sharing - users don’t worry about interference (aka the noisy neighbor problem)
• Predictable - allows us to offer strong SLAs to apps

Cons:
• Stranding - arbitrary slices mean some resources get lost
• Confusing - how do I know how much I need?

• analog: what size VM should I use?
• smart auto-scaling is needed!

• Expensive - you pay for certainty

In reality this is a multi-dimensional bin-packing problem: CPU, memory, disk
space, IO bandwidth, network bandwidth, ...

 Strong isolation

Google confidential │ Do not distribute

 A dose of reality

The kernel itself uses some resources “off the top”
• We can estimate it statistically but we can’t really limit it

Google confidential │ Do not distribute

 A dose of reality

0 2048 4096 6144 8192
Memory (MB)

CPU
(cores)

4

3

2

1

0 OS

RAM=4GB CPU=2.5

RAM=2GB CPU=1.0

RAM=1GB
CPU=0.5

over-committed!

Google confidential │ Do not distribute

 A dose of reality

The kernel itself uses some resources “off the top”
• We can estimate it statistically but we can’t really limit it

System daemons (e.g. our node agent) use some resources
• We can (and do) limit these, but failure modes are not always great

Google confidential │ Do not distribute

 A dose of reality

0 2048 4096 6144 8192
Memory (MB)

CPU
(cores)

4

3

2

1

0 OS

RAM=4GB CPU=2.5

RAM=2GB CPU=1.0

Sys

Google confidential │ Do not distribute

 A dose of reality

The kernel itself uses some resources “off the top”
• We can estimate it statistically but we can’t really limit it

System daemons (e.g. our node agent) use some resources
• We can (and do) limit these, but failure modes are not always great

If ANYONE is uncontained, then all SLOs are void. We pretend that the kernel
is contained, but only because we have no real choice. Experience shows this
holds up most of the time. Hold this thought for later...

Google confidential │ Do not distribute

 Results

Overall this works VERY well for latency-sensitive serving jobs

Shortcomings:
• There are still some things that can not be easily contained in real time

• e.g. cache (see CPI2)
• Some resource dimensions are really hard to schedule

• e.g. disk IO - so little of it, so bursty, and SO SLOW
• Low utilization: nobody uses 100% of what they request
• Not well tuned for compute-heavy work (e.g. batch)
• Users don’t really know how much CPU/RAM/etc. to request

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&uact=8&ved=0CCQQFjAB&url=http%3A%2F%2Feurosys2013.tudos.org%2Fwp-content%2Fuploads%2F2013%2Fpaper%2FZhang_2.pdf&ei=QIrhVMePJ9CboQT24YL4Dg&usg=AFQjCNFVonIuelgjNn1JpZAO6cxIeUBwzQ&sig2=RdwjwgvkQv5k7wzNWktimg&bvm=bv.85970519,d.cGU
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&uact=8&ved=0CCQQFjAB&url=http%3A%2F%2Feurosys2013.tudos.org%2Fwp-content%2Fuploads%2F2013%2Fpaper%2FZhang_2.pdf&ei=QIrhVMePJ9CboQT24YL4Dg&usg=AFQjCNFVonIuelgjNn1JpZAO6cxIeUBwzQ&sig2=RdwjwgvkQv5k7wzNWktimg&bvm=bv.85970519,d.cGU

Google confidential │ Do not distribute

 Usage vs bookings

0 2048 4096 6144 8192
Memory (MB)

CPU
(cores)

4

3

2

1

0

Google confidential │ Do not distribute

 Making better use of it all

Proposition: Re-sell unused resources with lower SLOs
• Perfect for batch work
• Probabilistically “good enough”

Shortcomings:
• Even more emphasis on isolation failures

• we can’t let batch hurt “paying” customers
• Requires a lot of smarts in the lowest parts of the stack

• e.g. deterministic OOM killing by priority
• we have a number of kernel patches we want to mainline, but we have

had a hard time getting upstream kernel on board

Google confidential │ Do not distribute

 Usage vs bookings

0 2048 4096 6144 8192
Memory (MB)

CPU
(cores)

4

3

2

1

0

batch batch
batch b

batch batch

batch

Google confidential │ Do not distribute

 Back to Docker

Container isolation today:
• ...does not handle most of this
• ...is fundamentally voluntary
• ...is an obvious area for improvement in the coming year(s)

Google confidential │ Do not distribute

 More than just isolation

Scheduling: Where should my job be run?

Lifecycle: Keep my job running

Discovery: Where is my job now?

Constituency: Who is part of my job?

Scale-up: Making my jobs bigger or smaller

Auth{n,z}: Who can do things to my job?

Monitoring: What’s happening with my job?

Health: How is my job feeling?

...

Google confidential │ Do not distribute

 Enter Kubernetes

Greek for “Helmsman”; also the root of
the word “Governor”

• Container orchestrator

• Runs Docker containers

• Supports multiple cloud and bare-metal
environments

• Inspired and informed by Google’s
experiences and internal systems

• Open source, written in Go

Manage applications, not machines

Google confidential │ Do not distribute

 Design principles

Declarative > imperative: State your desired results, let the system actuate

Control loops: Observe, rectify, repeat

Simple > Complex: Try to do as little as possible

Modularity: Components, interfaces, & plugins

Legacy compatible: Requiring apps to change is a non-starter

Network-centric: IP addresses are cheap

No grouping: Labels are the only groups

Cattle > Pets: Manage your workload in bulk

Open > Closed: Open Source, standards, REST, JSON, etc.

Google confidential │ Do not distribute

 Pets vs. Cattle

Google confidential │ Do not distribute

 High level design

CLI

API

UI

apiserver

users master

kubelet

kubelet

kubelet

nodes

scheduler

Google confidential │ Do not distribute

 Primary concepts

Container: A sealed application package (Docker)
Pod: A small group of tightly coupled Containers

example: content syncer & web server

Controller: A loop that drives current state towards desired state
example: replication controller

Service: A set of running pods that work together
example: load-balanced backends

Labels: Identifying metadata attached to other objects
example: phase=canary vs. phase=prod

Selector: A query against labels, producing a set result
example: all pods where label phase == prod

Google confidential │ Do not distribute

 Pods

Google confidential │ Do not distribute

 Pods

Google confidential │ Do not distribute

 Pods

Small group of containers & volumes

Tightly coupled

The atom of cluster scheduling &
placement

Shared namespace
• share IP address & localhost

Ephemeral
• can die and be replaced

Example: data puller & web server

Pod

File Puller Web Server

Volume

ConsumersContent
Manager

Google confidential │ Do not distribute

10.1.1.0/24

172.16.1.1

172.16.1.2

 Docker networking

10.1.2.0/24

172.16.1.1

10.1.3.0/24

172.16.1.1

Google confidential │ Do not distribute

10.1.1.0/24

172.16.1.1

172.16.1.2

 Docker networking

10.1.2.0/24

172.16.1.1

10.1.3.0/24

172.16.1.1

NAT

NAT

NAT

NAT

NAT

Google confidential │ Do not distribute

 Pod networking

Pod IPs are routable
• Docker default is private IP

Pods can reach each other without NAT
• even across nodes

No brokering of port numbers

This is a fundamental requirement
• several SDN solutions

Google confidential │ Do not distribute

10.1.1.0/24

10.1.1.93

10.1.1.113

 Pod networking

10.1.2.0/24

10.1.2.118

10.1.3.0/24

10.1.3.129

Google confidential │ Do not distribute

 Labels

Arbitrary metadata

Attached to any API object

Generally represent identity

Queryable by selectors
• think SQL ‘select ... where ...’

The only grouping mechanism
• pods under a ReplicationController
• pods in a Service
• capabilities of a node (constraints)

Example: “phase: canary”

App: Nifty
Phase: Dev

Role: FE

App: Nifty
Phase: Dev

Role: BE

App: Nifty
Phase: Test

Role: FE

App: Nifty
Phase: Test

Role: BE

Google confidential │ Do not distribute

 Selectors

App: Nifty
Phase: Dev

Role: FE

App: Nifty
Phase: Test

Role: FE

App: Nifty
Phase: Dev

Role: BE

App: Nifty
Phase: Test

Role: BE

Google confidential │ Do not distribute

App == NiftyApp: Nifty
Phase: Dev

Role: FE

App: Nifty
Phase: Test

Role: FE

App: Nifty
Phase: Dev

Role: BE

App: Nifty
Phase: Test

Role: BE

 Selectors

Google confidential │ Do not distribute

App == Nifty
Role == FEApp: Nifty

Phase: Dev
Role: FE

App: Nifty
Phase: Test

Role: FE

App: Nifty
Phase: Dev

Role: BE

App: Nifty
Phase: Test

Role: BE

 Selectors

Google confidential │ Do not distribute

App == Nifty
Role == BEApp: Nifty

Phase: Dev
Role: FE

App: Nifty
Phase: Test

Role: FE

App: Nifty
Phase: Dev

Role: BE

App: Nifty
Phase: Test

Role: BE

 Selectors

Google confidential │ Do not distribute

App == Nifty
Phase == DevApp: Nifty

Phase: Dev
Role: FE

App: Nifty
Phase: Test

Role: FE

App: Nifty
Phase: Dev

Role: BE

App: Nifty
Phase: Test

Role: BE

 Selectors

Google confidential │ Do not distribute

App == Nifty
Phase == Test

App: Nifty
Phase: Dev

Role: FE

App: Nifty
Phase: Test

Role: FE

App: Nifty
Phase: Dev

Role: BE

App: Nifty
Phase: Test

Role: BE

 Selectors

Google confidential │ Do not distribute

 Replication Controllers

Canonical example of control loops

Runs out-of-process wrt API server

Have 1 job: ensure N copies of a pod
• if too few, start new ones
• if too many, kill some
• group == selector

Cleanly layered on top of the core
• all access is by public APIs

Replicated pods are fungible
• No implied ordinality or identity

Replication Controller
- Name = “nifty-rc”
- Selector = {“App”: “Nifty”}
- PodTemplate = { ... }
- NumReplicas = 4

API Server

How
many?

3

Start 1
more

OK

How
many?

4

Google confidential │ Do not distribute

 Replication Controllers

node 1

f0118

node 3

node 4node 2

d9376

b0111

a1209

Replication Controller
- Desired = 4
- Current = 4

Google confidential │ Do not distribute

 Replication Controllers

node 1

f0118

node 3

node 4node 2

Replication Controller
- Desired = 4
- Current = 4

d9376

b0111

a1209

Google confidential │ Do not distribute

 Replication Controllers

node 1

f0118

node 3

node 4

Replication Controller
- Desired = 4
- Current = 3

b0111

a1209

Google confidential │ Do not distribute

 Replication Controllers

node 1

f0118

node 3

node 4

Replication Controller
- Desired = 4
- Current = 4

b0111

a1209

c9bad

Google confidential │ Do not distribute

 Replication Controllers

node 1

f0118

node 3

node 4node 2

Replication Controller
- Desired = 4
- Current = 5

d9376

b0111

a1209

c9bad

Google confidential │ Do not distribute

 Replication Controllers

node 1

f0118

node 3

node 4node 2

Replication Controller
- Desired = 4
- Current = 4

d9376

b0111

a1209

c9bad

Google confidential │ Do not distribute

 Services

A group of pods that act as one == Service
• group == selector

Defines access policy
• only “load balanced” for now

Gets a stable virtual IP and port
• called the service portal
• also a DNS name

VIP is captured by kube-proxy
• watches the service constituency
• updates when backends change

Hide complexity - ideal for non-native apps

Portal (VIP)

Client

Google confidential │ Do not distribute

 Services

10.0.0.1 : 9376

Client

kube-proxy

Service
- Name = “nifty-svc”
- Selector = {“App”: “Nifty”}
- Port = 9376
- ContainerPort = 8080

Portal IP is assigned

iptables
DNAT

TCP / UDP

apiserver

watch
10.240.2.2 : 808010.240.1.1 : 8080 10.240.3.3 : 8080

TCP / UDP

Google confidential │ Do not distribute

 Kubernetes Status & plans

Open sourced in June, 2014
• won the BlackDuck “rookie of the year” award
• so did cAdvisor :)

Google launched Google Container Engine (GKE)
• hosted Kubernetes
• https://cloud.google.com/container-engine/

Roadmap:
• https://github.com/GoogleCloudPlatform/kubernetes/blob/master/docs/roadmap.md

Driving towards a 1.0 release in O(months)
• O(100) nodes, O(50) pods per node
• focus on web-like app serving use-cases

Google confidential │ Do not distribute

 Monitoring

Optional add-on to Kubernetes clusters

Run cAdvisor as a pod on each node
• gather stats from all containers
• export via REST

Run Heapster as a pod in the cluster
• just another pod, no special access
• aggregate stats

Run Influx and Grafana in the cluster
• more pods
• alternately: store in Google Cloud Monitoring

Google confidential │ Do not distribute

 Logging

Optional add-on to Kubernetes clusters

Run fluentd as a pod on each node
• gather logs from all containers
• export to elasticsearch

Run Elasticsearch as a pod in the cluster
• just another pod, no special access
• aggregate logs

Run Kibana in the cluster
• yet another pod
• alternately: store in Google Cloud Logging

Google confidential │ Do not distribute

 Kubernetes and isolation

We support isolation...
• ...inasmuch as Docker does

We want better isolation
• issues are open with Docker

• parent cgroups, GIDs, in-place updates,
• will also need kernel work
• we have lots of tricks we want to share!

We have to meet users where they are
• strong isolation is new to most people
• we’ll all have to grow into it

Google confidential │ Do not distribute

 Example: nested cgroups

pod1 cgroup
CPU: 4 cores

Memory: 8 GB

c1 cgroup
CPU: 2 cores

Memory: 4 GB

c2 cgroup
CPU: 1 core

Memory: 4 GB

c2 cgroup
CPU: 1 core

Memory: 4 GB

pod2 cgroup
CPU: 3 cores

Memory: 5 GB

c1 cgroup
CPU: 3 cores

Memory: 5 GB

c1 cgroup
CPU: <none>

Memory:
<none>

machine
CPU: 8 cores

Memory: 16 GB

leftovers
CPU: 1 cores

Memory: 3 GB

pod3 cgroup
CPU: <none>

Memory:
<none>

Google confidential │ Do not distribute

 The Goal: Shake things up

Containers is a new way of working

Requires new concepts and new tools

Google has a lot of experience...

...but we are listening to the users

Workload portability is important!

Google confidential │ Do not distribute

Kubernetes is Open Source
We want your help!

http://kubernetes.io
https://github.com/GoogleCloudPlatform/kubernetes

irc.freenode.net #google-containers
@kubernetesio

http://kubernetes.io
http://kubernetes.io
https://github.com/GoogleCloudPlatform/kubernetes
https://github.com/GoogleCloudPlatform/kubernetes

Google confidential │ Do not distribute

 Questions?

Images by Connie Zhou

 http://kubernetes.io

Google confidential │ Do not distribute

Backup Slides

Google confidential │ Do not distribute

 Control loops

Drive current state -> desired state

Act independently

APIs - no shortcuts or back doors

Observed state is truth

Recurring pattern in the system

Example: ReplicationController

observe

diff

act

Google confidential │ Do not distribute

 Modularity

Loose coupling is a goal everywhere
• simpler
• composable
• extensible

Code-level plugins where possible

Multi-process where possible

Isolate risk by interchangeable parts

Example: ReplicationController
Example: Scheduler

Google confidential │ Do not distribute

 Atomic storage

Backing store for all master state

Hidden behind an abstract interface

Stateless means scalable

Watchable
• this is a fundamental primitive
• don’t poll, watch

Using CoreOS etcd

Google confidential │ Do not distribute

 Volumes

Pod scoped

Share pod’s lifetime & fate

Support various types of volumes
• Empty directory (default)
• Host file/directory
• Git repository
• GCE Persistent Disk
• ...more to come, suggestions welcome

Pod

Container Container

Git

GitHub

Host

Host’s
FS

GCE

GCE PD

Empty

Google confidential │ Do not distribute

 Pod lifecycle

Once scheduled to a node, pods do not move
• restart policy means restart in-place

Pods can be observed pending, running, succeeded, or failed
• failed is really the end - no more restarts
• no complex state machine logic

Pods are not rescheduled by the scheduler or apiserver
• even if a node dies
• controllers are responsible for this
• keeps the scheduler simple

Apps should consider these rules
• Services hide this
• Makes pod-to-pod communication more formal

Google confidential │ Do not distribute

 Cluster services

Logging, Monitoring, DNS, etc.

All run as pods in the cluster - no special treatment, no back doors

Open-source solutions for everything
• cadvisor + influxdb + heapster == cluster monitoring
• fluentd + elasticsearch + kibana == cluster logging
• skydns + kube2sky == cluster DNS

Can be easily replaced by custom solutions
• Modular clusters to fit your needs

