

NGINX 101

Now with
more Docker

Core NGINX functionality includes HTTP
request, proxy and caching services which
can be combined into a complete
application delivery platform. Or, as we
like to think of it….

The origins

NGINX development began at Rambler.ru
by Igor Sysoev to solve c10k problem

•  High concurrency
•  Low memory use

•  2002 commodity hardware

High Concurrency

Source:	 Webfac-on	 Blog:	 h3p://blog.webfac-on.com/2008/12/a-‐li3le-‐holiday-‐present-‐10000-‐reqssec-‐with-‐nginx-‐2/	

Low Memory Use

Source:	 Webfac-on	 Blog:	 h3p://blog.webfac-on.com/2008/12/a-‐li3le-‐holiday-‐present-‐10000-‐reqssec-‐with-‐nginx-‐2/	

Learn more at nginx.com

Apache is like Microsoft
Word, it has a million options
but you only need six. Nginx
does those six things, and it
does five of them 50 times
faster than Apache.

- Chris Lea

1. What functionality do you require?

•  Standard modules
•  NGINX Plus functionality
•  Optional NGINX and third-party

modules

3. How do you want to install?

•  “Official” NGINX packages (nginx.org)
•  Build from Source
•  From Operating System repository
•  From Amazon AWS Marketplace
•  From Docker Hub Registry

2. What branch do you want to
track?

•  Mainline (1.7)
•  Stable (1.6)
•  Something older?

h3p://nginx.com/blog/nginx-‐1-‐6-‐1-‐7-‐released/	 	
	

Questions before you begin

$ wget http://nginx.org/keys/nginx_signing.key
$ sudo apt-key add nginx_signing.key

cat > /etc/apt/sources.list.d/nginx.list
deb http://nginx.org/packages/mainline/ubuntu/ trusty nginx
deb-src http://nginx.org/packages/mainline/ubuntu/ trusty nginx

apt-get update
apt-cache policy nginx
nginx:
 Installed: (none)
 Candidate: 1.7.0-1~trusty
 Version table:
 1.7.0-1~trusty 0
 500 http://nginx.org/packages/mainline/ubuntu/ trusty/nginx amd64 Packages
 1.4.6-1ubuntu3 0
 500 http://us.archive.ubuntu.com/ubuntu/ trusty/main amd64 Packages

Traditional Installation

h3p://nginx.org/en/linux_packages.html#mainline	 	

Verify it’s working

/etc/init.d/nginx status
 * nginx is running

/usr/sbin/nginx –v
nginx version: nginx/1.7.0

The basics of the install

Where are the things

•  NGINX executable is at /usr/sbin/nginx
•  Configuration files at /etc/nginx
•  Log files at /var/log/nginx

NGINX processes

•  One master process and many worker
processes

•  The master process evaluates the
configuration file and manages the worker
processes

•  Worker processes handle actual requests

[root@localhost ~]# ps -ef |grep nginx
root 1991 1 0 08:06 ? 00:00:00 nginx: master
process /usr/sbin/nginx -c /etc/nginx/nginx.conf
nginx 2974 1991 0 08:22 ? 00:00:00 nginx: worker
process
nginx 2975 1991 0 08:22 ? 00:00:00 nginx: worker
process

Basic NGINX commands

•  To start NGINX, simply run the executable
file at /usr/sbin/nginx

•  The executable can be run with a “-s”
parameter followed by a signal.

Reload	 configura.on	
nginx –s reload

Graceful	 shutdown.	 NGINX	 will	 wait	 for	 workers	 to	 finish	 processing	 requests	
nginx –s quit

Fast	 shutdown	
nginx –s stop

The NGINX configuration file

•  The configuration file determines how
NGINX and its modules behave

•  The main file is named nginx.conf and is
located in /etc/nginx

•  The main configuration file may include
references to additional configuration files

•  Configuration consists of
– Directives
– Blocks
– Contexts

Configuration directives

Directives

•  Consists of the directive name, followed by
parameters and ends in a semicolon

•  Two types of directives
– Simple directive
– Block directive

A Directive is a configuration statement that controls
the behaviour of NGINX modules

Block Directives

A Block Directive is a directive that contains multiple
configuration instructions

•  The configurations instructions inside a
block directive are surrounded by braces
(i.e { })

Context example

•  Example of a
Server context,
which has two
location blocks

•  The server
context here
can also be
referred to as a
server block

Specify the Server Block

•  Goes inside the HTTP context
•  Can contain a listen directive, server_name

directive and root directive
•  Can specify many server blocks
•  Equivalent to VirtualHost in Apache

The Server block defines the configuration for a virtual
server

Specify the Server Block

•  NGINX will choose which server to process
a request based on the server name and
the listen port

The Server block defines the configuration for a virtual
server

Define a virtual server that listens for requests on port 80
http {

 server {

 listen 80;
 }

}

Location Block

•  Placed inside a server block
•  Server block can contain many location blocks
•  Can contain a Root directive, which will

override the Root directive of the server
•  Can be nested inside a location block

•  Two types of location blocks
 Prefix location + Regex location

•  The location block defines the configuration that
will apply based on a matching request URI

Example Server and Location

•  Root directive sets the root directory for a
request.

•  A request to localhost:8080 will return the
•  index.html file in /home/nginx/public_html

server {
 listen 8080;
 root /home/nginx/public_html;
 location /application1 {
 }
 location /images/ {
 root /data;

 }
}

The Include directive

•  The include directive allows you to
include additional configuration files

•  Syntax: include <path to file>;
•  Best Practices:
– For each server, create a separate

configuration file in /etc/nginx/conf.d
– nginx.conf includes all files in the conf.d

folder ending in .conf by default

Defining server names

•  Use the server_name directive in the server
context to define the names for your server

server {
 server_name mycompany.com *.mycompany.com;

}

Simple Proxy Scenario

•  Server one listening for requests on port
80 and serves content from /home/
nginx/public_html

•  Server two listens on port 8080 and
serves content from /data/proxy

•  Requests for localhost are proxied over
to the server on port 8080

Simple Proxy Scenario

Logging

•  The error_log directive can be used to configure
the logging settings

•  Syntax:
error_log <file> <log level>;

•  Can be used in the main, server, http and
location contexts

•  The Log level specifies how detailed the log
output will be

Example	
error_log logs/error.log info;

Logging best practices

•  Should keep a separate error log file for
each server

•  Helps to reduce size of each log file and
makes troubleshooting easier

server {
 server_name server1.com;
 root /data/server1.com;
 error_log logs/server1.error.log info;

}

server {

 server_name server2.com
 root /data/server2.com;
 error_log logs/server2.error.log info;

}

Proxying to the upstream block

Specifying server priorities

•  By default, all servers defined in the
upstream block are treated with equal
priority

•  Use the weight parameter to indicate a
higher or lower weighting for a particular
server

upstream myServers {
 server backend.server1 weight=5
 server backend.server2 weight=3
 server backend.server3 weight=2

}

Reverse proxy and caching

•  It’s common to use NGINX in front of
another web or application server

•  NGINX can handle serving all the static
content, while requests for dynamic
content such as php are proxied to the
application server

•  Static content can then be cached to
improve performance

Defining the cache path

http {
 proxy_cache_path /var/cache/nginx levels=1:2

keys_zone=server-cache:8m max_size=1000m
inactive=600m;
 proxy_temp_path /tmp/nginx;

•  proxy_cache_path directive to set where to
store cached content

•  proxy_temp_path directive tells NGINX where to
store temporary data which is used to build the
cache

•  Both directives must be placed in HTTP context

Defining the cache path

•  proxy_cache_path parameters
– keys_zone parameter specifies the name

and size of the cache

– max_size parameter specifies the maximum
size of the cache

–  Inactive parameter specifies how long
cached data is kept for if not accessed

Configuring the proxy cache

•  proxy_cache_key directive specifies to use the
hostname/subdomain/domain and request URI as the
key

•  proxy_cache directive defines the shared memory
zone used for caching.

–  Name specified must match the name of the cache
defined in the proxy_cache_path directive

Location / {
 proxy_pass http://application.com:8080;
 proxy_cache_key “$scheme$host$request_uri”;
 proxy_cache server-cache;
 proxy_chache_valid 1m;
 proxy_cache_valid 404 1m;

]

Passing headers

•  Use proxy_set_header directive to redefine the
request header fields that are passed to the
proxied server

•  Use this to pass on the hostname and IP address
of the request machine

•  Without setting the headers, the server you
proxy to will simply see your reverse proxy
server’s host and IP

proxy_set_header Host $host;
proxy_set_header X-Real-IP $remote_addr;

proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;

Configuring a HTTPS server

•  Enable SSL by specifying the SSL
parameter on the listen directive

•  Specify the path of your SSL server
certificate and private key

server {
 listen 443 ssl;
 server_name training.secure.com;

 error_log logs/secure.error.log;
 ssl_certificate /etc/nginx/certs/nginxtraining.crt
 ssl_certificate_key /etc/nginx/certs/nginxtraining.key

]

SSL session cache

•  SSL sessions can be stored in a cache and
reused in order to avoid having to perform a
“handshake” as part of subsequent
connections

•  Reduces the amount of CPU intensive
operations on the server

•  The session cache can be shared between
workers

•  Cache will timeout after 5 minutes by
default, but this can be configured with the
ssl_session_timeout directive

Session cache example

•  Syntax
ssl_session_cache shared:<name>:size;

•  Size is specified in bytes or megabytes
•  1 MB can store around 4000 sessions
•  Can specified in the http or server context

Example	
http {

 ssl_session_cache shared:ssl:10m;
 ssl_session_timeout 10m;

 server {
 listen 443 ssl;
 ...

Now with
more Docker

registry.hub.docker.com

Dockerfile

FROM debian:wheezy

MAINTAINER NGINX Docker Maintainers "docker-maint@nginx.com"

RUN apt-key adv --keyserver pgp.mit.edu --recv-keys
573BFD6B3D8FBC641079A6ABABF5BD827BD9BF62
RUN echo "deb http://nginx.org/packages/mainline/debian/ wheezy nginx" >> /etc/
apt/sources.list

ENV NGINX_VERSION 1.7.10-1~wheezy

RUN apt-get update && \
 apt-get install -y ca-certificates nginx=${NGINX_VERSION} && \
 rm -rf /var/lib/apt/lists/*

forward request and error logs to docker log collector
RUN ln -sf /dev/stdout /var/log/nginx/access.log
RUN ln -sf /dev/stderr /var/log/nginx/error.log

VOLUME ["/var/cache/nginx"]

EXPOSE 80 443

CMD ["nginx", "-g", "daemon off;"]

$ docker run -P –d nginx
ff635ea2653c9489de7037b5c106a26d36f5907e4e75a43f47a3a38029a56b14

docker ps
CONTAINER ID IMAGE COMMAND CREATED
STATUS PORTS NAMES
ff635ea2653c nginx:latest "nginx -g 'daemon of 16 seconds ago
Up 11 seconds 0.0.0.0:49153->443/tcp, 0.0.0.0:49154->80/tcp nginx-test

Run our Docker container

hAps://registry.hub.docker.com/_/nginx/	

$ docker@52.10.213.150 ~: docker run -it nginx /bin/bash
root@74d2a7e93244:/# more /etc/nginx/nginx.conf

user nginx;
worker_processes 1;

error_log /var/log/nginx/error.log warn;
pid /var/run/nginx.pid;

events {
 worker_connections 1024;
}

http {
 include /etc/nginx/mime.types;
 default_type application/octet-stream;

 log_format main '$remote_addr - $remote_user [$time_local] "$request" '
 '$status $body_bytes_sent "$http_referer" '
 '"$http_user_agent" "$http_x_forwarded_for"’;

…

Exploring our Docker container

Extending base images in your Dockerfile

From	 @jpe3azo’s	 Docker	 talk	 20150220	 #SCaLE13x	

Your NGINX Dockerfile

FROM nginx

RUN rm /etc/nginx/conf.d/default.conf
RUN rm /etc/nginx/conf.d/example_ssl.conf

COPY static-html-directory /usr/share/nginx/html

COPY nginx.conf /etc/nginx/nginx.conf

h3p://nginx.com/blog/deploying-‐nginx-‐nginx-‐plus-‐docker/	

•  Fancier options i.e. more repeatable and scalable
–  Defining VOLUMEs

–  Using helper containers

–  Linking containers

http://sarah.is/ExcitedAboutMicroservices
	

@sarahnovotny
Chief Evangelist, NGINX
Program Chair, OSCON

Thanks for your time!

