

Flatpak: Easy, Fast, Safe

Christian Hergert
@hergertme

TM

What is Flatpak?

TM

What is Flatpak?
• A distribution mechanism to efficiently and safely ship bits to users

• A robust sandbox to protect users from intrusive applications

• Decentralized design to avoid app-store lock-in

• A suite of developer tooling to simplify application composition

• Ship releases and bug fixes more frequently and with less latency

TM

Who are we?

TM

Who makes Flatpak?
• Inception by Alex Larsson of the GNOME Project

• Informed by lessons learned implementing Glick, Glick 2, and fixing file-
system plumbing in the docker project

• Colin Walters built these great technologies called OSTree (git for operating
systems) and linux-user-chroot (stronger sandboxing) now bubblewrap

• Red Hat, Endless, Collabora, Codethink, Intel, Kinvolk, Solus, and an ever
growing list of individual contributors

TM

Flatpak provides to users...

TM

Easy installation and update
• Cross distribution from day 0

• GNOME Software supports Flatpak

• Used on many distributions and desktops outside of GNOME

• Buy-in from other Free Software projects like Solus, KDE, and more

• Command line tools for people who prefer them

• Native support for proprietary graphics drivers

• Lots of coordination to make this happen such as statically linking GL
drivers from vendors and Mesa

• Even supports ancient kernels like mainline Linux 3.2

TM

Efficient installs and updates
• Most people still have relatively slow or partially connected internet

• Failure to accept this is exclusionary

• Static deltas provide efficient release-to-release downloads

• Combination of single file download and bsdiff for tight updates

• Zero-to-installed is also a static delta for new installations

• Without static deltas, efficient git-style tree compare-and-sync

• Application vs Runtime split reduces download size when multiple
applications are installed

TM

Trustworthy applications
• Application meta-data is cryptographically verified in depth

• Compare this to git-SHA1 which does not verify tree in depth

• Applications updated atomically, either they succeed or no change is made

• Applications can safely update while running

• This often breaks with distributions, where 99% of the time it works, but 1%
of the time your system is left with inconsistent state

• Rigid sand-boxing with Portals for elevating privilege via safe API

• Applications will continue to run for years and across OS upgrades

• Strong integration with Wayland security model

• Apps cannot snoop on each other (or even know they are installed)

TM

Flatpak provides to devs...

TM

Cross-distribution
• The first packing system designed from ground-up to be cross-distribution

• Doesn’t rely on ABI of host-based libraries

• Doesn’t rely on out-of-tree kernel LSM, supports SELinux

• Uses mainline Linux kernel features, suid helper for older kernels

• Only requires POSIX compliant file-system

• Hard-link farms, content addressing, potential for btrfs/xfs reflink

• Atomic upgrade, even while application is running

• Runtimes provide predictable and reliable user-space

TM

Robust build tooling
• flatpak-builder wrangles together dependencies, patches, and your app

• OSTree cache-points for unreasonably fast partial rebuilds

• Getting closer to reproducible builds (not there yet, but closer)

• Turns out sharing compilers and predictable build runtime helps a lot

• Control over dependencies which have been Q/A tested

• Build and test in the same environment as your users

• IDE integration with Builder

• Profiler integration with Sysprof

• Debugger integration coming to Builder 3.26

TM

Runtimes and SDKs
• Allows projects to share common libraries

• Allows for smaller per-app downloads

• Shared burden for CVE tracking

• You probably shouldn’t make your own

• Reuse Freedesktop, GNOME, KDE, etc

• An SDK is a runtime without “developer” bits removed

• Headers, debug symbols, compilers, associated tooling, etc

• Your app can rely on an SDK too, Builder targets org.gnome.Sdk

TM

Safety-focused Portals
• Portals run out of process, app does not get raw access

• Document portal seamlessly gives access to $HOME

• FUSE/fd-pass to grant app ability to read/write

• Open documents, URLs, etc with installed applications

• “Capture” portal to take a photo

• We’re enhancing daemons like PulseAudio and Piños for sand-boxing

• Plenty more to write! (Come join us!)

TM

Get more testing
• Support for concurrent application channels

• Stable, Beta, Nightly, etc

• You test the same runtime environment as your users

• Multiple architecture support

• With modern QEMU and Linux kernel, you can run ARM on x86_64!

TM

Flatpak provides distributions...

TM

Help
• Distributions are universally overworked

• Compete on what you’re good at, building the OS rather than Sisyphean tasks
like app packaging

• Many applications relying on a few number of runtimes could allow us to
reduce CVE tracking and patching load for all distributions

• This could mean that your applications gets CVE updates faster than it
otherwise would thanks to shared ownership over runtimes

• Applications that bundle security related components with vulnerabilities is
still a concern, but mitigated through robust sand-boxing

• Automated CVE tracking can be a major win for developers (on my ToDo list)

TM

Improve OS security
• Robust sand-boxing to protect your users from third-party apps

• Improve your security story, by sand-boxing apps that would otherwise be
shipped without sand-boxing

• Support for the in-tree LSM, SELinux

• D-Bus Filtering means applications can’t communicate with each other

• Xorg is not suitable for both security and efficient graphics

• We can discuss the design issues at the core of the Xorg protocols and
currently available extensions (See me afterwards if you’d like to)

TM

ABI and version skew
• Many libraries break ABI in very subtle ways

• ABI is nebulous once you move past symbols and structure layout

• We’ve tried to fix upstreams for years, unsuccessfully

• Turns out it’s really hard and those that tell you otherwise might not
understand the problem fully

• Even worse in the Node, Python, Ruby, Go, and other H-L-L communities

• They lack the rigid adherence to SONAME and ABI version semantics that
are more common in the C (and sometimes C++) communities

• Python applications often break due to shared Python package dependency
that breaks API between releases

TM

Reduce hosting costs
• Smaller full-build ISOs

• Remove application distribution costs from your bandwidth

• If you host a flatpak repository you get small, incremental updates

• Your mirrors can update more often and faster

TM

Demo Time!

TM

TM

Thank You!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

