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Hi, I'm Greg

Greg Farnum

Ceph developer since 2009

Principal Software Engineer, Red Hat

gfarnum@redhat.com
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Overview

● What is Ceph/Cephfs

● CephFS: What Works

– It's a distributed POSIX filesystem!

– There are many niceties that go with that

● CephFS: What Doesn't Work (Yet)

– Directory fragmentation

– Erasure Coding

– Multi-Active MDS

– Snapshots

● Pain Points & Use Cases
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Where Does Ceph Come From?

● Then: UC Santa Cruz Storage Research 

Systems Center

● Long-term research project in petabyte-

scale storage

● trying to develop a Lustre successor.

● Now: Red Hat, a commercial open-source 

software & support provider you might have 

heard of :)

(Mirantis, SuSE, Canonical, 42on, Hastexo, ...)

● Building a business; customers in virtual block 

devices and object storage

● ...and reaching for filesystem users!
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Now: Fully Awesome

RGW
web services gateway for 

object storage, compatible 

with S3 and Swift

LIBRADOS
client library allowing apps to access RADOS (C, C++, Java, Python, Ruby, PHP)

RADOS
software-based, reliable, autonomous, distributed object store comprised of

self-healing, self-managing, intelligent storage nodes and lightweight monitors

RBD
reliable, fully-distributed 

block device with cloud 

platform integration

CEPHFS
distributed file system with 

POSIX semantics and scale-

out metadata management

APP HOST/VM CLIENT
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WHERE DO OBJECTS LIVE?
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A METADATA SERVER?
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CRUSH IS A QUICK CALCULATION
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CRUSH AVOIDS FAILED DEVICES
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CRUSH: DYNAMIC DATA PLACEMENT
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CRUSH:

 Pseudo-random placement algorithm

 Fast calculation, no lookup

 Repeatable, deterministic

 Statistically uniform distribution

 Stable mapping

 Limited data migration on change

 Rule-based configuration

 Infrastructure topology aware

 Adjustable replication

 Weighting



DATA IS ORGANIZED INTO POOLS
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RADOS COMPONENTS
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OSDs:

 10s to 10000s in a cluster

 One per disk (or one per SSD, RAID group…)

 Serve stored objects to clients

 Intelligently peer for replication & recovery

Monitors:

 Maintain cluster membership and state

 Provide consensus for distributed decision-making

 Small, odd number

 These do not serve stored objects to clients

M
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RADOS: FAILURE RECOVERY

● Each OSDMap is numbered with an epoch number

● The Monitors and OSDs store a history of OSDMaps

● Using this history, an OSD which becomes a new member of a 

PG can deduce every OSD which could have received a write 

which it needs to know about

● The process of discovering the authoritative state of the objects 

stored in the PG by contacting old PG members is called 

Peering
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11Epoch 20220: 5

RADOS: FAILURE RECOVERY
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11Epoch 20220: 305

Epoch 20113: 305

11Epoch 19884: 305

30

RADOS: FAILURE RECOVERY
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LIBRADOS: RADOS ACCESS FOR APPS
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LIBRADOS:

 Direct access to RADOS for applications

 C, C++, Python, PHP, Java, Erlang

 Direct access to storage nodes

 No HTTP overhead

 Rich object API

 Bytes, attributes, key/value data

 Partial overwrite of existing data

 Single-object compound atomic operations

 RADOS classes (stored procedures)
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Existing Awesome Ceph Stuff



THE RADOS GATEWAY
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RADOSGW MAKES RADOS WEBBY
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RADOSGW:

 REST-based object storage proxy

 Uses RADOS to store objects

 API supports buckets, accounts

 Usage accounting for billing

 Compatible with S3 and Swift applications



STORING VIRTUAL DISKS
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RBD STORES VIRTUAL DISKS
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RADOS BLOCK DEVICE:

 Storage of disk images in RADOS

 Decouples VMs from host

 Images are striped across the cluster (pool)

 Snapshots

 Copy-on-write clones

 Support in:

 Mainline Linux Kernel (2.6.39+)

 Qemu/KVM

 OpenStack, CloudStack, Nebula, Proxmox
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CephFS, The Awesome Parts
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Hammer (LTS)

Spring 2015

Jewel (LTS)

Spring 2016

Infernalis

Fall 2015

Kraken

Fall 2016

Luminous (LTS)

Spring 2017

Awesomeness Timeline

10.2.z

12.2.z

0.94.z

Pre-Awesome Some Awesome
More Awesome
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Awesome: It's A Filesystem!
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POSIX Filesystem

● Mounting, from multiple clients

– Not much good without that!

● POSIX-y goodness:

– Atomic updates

– Files, with names and directories and rename

● Coherent caching

– Updates from one node are visible elsewhere, immediately
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LINUX HOST

M M

M

RADOS CLUSTER

KERNEL MODULE

datametadata
01

10

Ceph-fuse, 
samba, 
Ganesha
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POSIX Filesystem: Consistency

● CephFS has “consistent caching”

● Clients are allowed to cache, and the server invalidates them 

before making changes

– This means clients never see stale data of any kind!

– And there's no opportunity for any kind of split brain situation
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POSIX Filesystem: Scaling Data

● All data is stored in RADOS

● Filesystem clients write directly to RADOS

● Need more data space? Add more OSDs!

● Faster throughput?

– Faster SSDs!

– Wider striping of files across objects!

– ...at least, up until you're limited by latency instead of throughput
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POSIX Filesystem: Scaling Metadata

● Only active metadata is stored in memory

● Size your metadata server (MDS) by active set size, not total 

metadata
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rstats are cool

# ext4 reports tirs as 4K

ls -lhd /ext4/data

drwxrwxr-x. 2 john john 4.0K Jun 25 14:58 
/home/john/data

# cephfs reports tir size from contents

$ ls -lhd /cephfs/mydata

drwxrwxr-x. 1 john john 16M Jun 25 14:57 ./mydata
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Awesome: A Security Model
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CephX security capabilities

● Clients start out unable to access the MDS.

– Incrementally granted permissions for subtrees (or the whole tree)

– To act as a specific user

– Etc

● For real security, these must be coordinated with OSD caps:

ceph auth get-or-create client.foo \

  mds “allow rw path=/foodir” \

  osd “allow rw pool=foopool” \

  mon “allow r”
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CephX security capabilities: Protection

● The security capabilities are encrypted by the server; can't be 

changed by client

● MDS only examines MDS grants

– Protects against acting as an unauthorized user

– Prevents all access to inodes/dentries not under granted path

● OSDs independently examine OSD grants

– Protects against access to unauthorized pools and namespaces

● Possible hole: if clients share namespace+pool, they can trample on 

raw file data

– If you don't trust your clients, give them each their own namespace (free 

for RADOS) and specify it in CephFS layout for their directory hierarchy
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Awesome: Hot standby MDS
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Standby servers

● Nothing ties metadata to a particular server!

● Spin up an arbitrary number of “standby” and “standby-replay” 

servers

– Standby: just waiting around; can be made active

– Standby-replay: actively replaying the MDS log

● Warms up the cache for fast takeover

rename /tmp/file1 -> /home/greg/foo

rename /tmp/file2 -> /home/greg/bar

create /home/greg/baz



39

Standby servers: reconnect

● Replay log, load all necessary file data from RADOS

● Let clients replay uncommitted operations, process them

● Synchronize caching states between clients and MDS

● Go active!
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Mostly Awesome: Scrub/Repair
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Forward Scrub

● Forward scrubbing, to ensure consistency

ceph daemon mds.<id> scrub_path

ceph daemon mds.<id> scrub_path recursive

ceph daemon mds.<id> scrub_path repair

ceph daemon mds.<id> tag path

● You have to run this manually right now, no automatic 

background scrub :(

– Fix: targeted for Luminous! With multi-MDS support!
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Repair tools: cephfs-journal-tool

● Disaster recovery for damaged journals:

– inspect/import/export/reset

– header get/set

– event recover_dentries

● Allows rebuild of metadata that exists in journal but is lost on 

disk

● Companion cephfs-table-tool exists for resetting 

session/inode/snap tables as needed afterwards.
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Repair tools: cephfs-data-scan

● “Backwards scrub”

● Iterate through all RADOS objects and tie them back to the 

namespace

● Parallel workers, thanks to new RADOS functionality

– cephfs-data-scan scan_extents

– cephfs-data-scan scan_inodes
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Repair tool methods

● Examine object names and send inferred stat info to “root” 

object

1000.1

/<v2>/home<v5>/greg<v9>/foo

1000.0
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foo -> ino 1342, 6 MB

bar -> ino 1001,1024 bytes

baz -> ino 1242, 2 MB

/<ino 0,v2>/home<ino 1,v5>/greg<ino 5,v9>/

mydir, total size 2074 bytes

Repair tool methods

● Assemble tree information from backtrace and inferred stat

/<v2>/home<v5>/greg<v9>/foo

1342.0
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Repair tool methods

● Do inference and then insertion in parallel across the cluster

M M

M M

M

RADOS CLUSTER
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CephFS: The Parts You Don't Get
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Almost Awesome: Directory Frags
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Directory Fragmentation

● Directories are generally loaded from disk as a unit

– But sometimes that's too much data at once!

– Or you want to spread a hot directory over many active MDSes

foo -> ino 1342, 4 MB

bar -> ino 1001, 1024 KBytes

baz -> ino 1242, 2 MB

/<ino 0,v2>/home<ino 1,v5>/greg<ino 5,v9>/

Mydir[01], total size 7MB

hi -> ino 1000, 6 MB

hello -> ino 6743, 1024 KB

whaddup -> ino 9872, 1 MB

/<ino 0,v2>/home<ino 1,v5>/greg<ino 5,v9>/

Mydir[10], total size 8MB
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Directory Fragmentation: What's Short

● It's not well-tested

– Just need to do the QA work

– Expected in Luminous

foo -> ino 1342, 4 MB

bar -> ino 1001, 1024 KBytes

baz -> ino 1242, 2 MB

/<ino 0,v2>/home<ino 1,v5>/greg<ino 5,v9>/

Mydir[01], total size 7MB

hi -> ino 1000, 6 MB

hello -> ino 6743, 1024 KB

whaddup -> ino 9872, 1 MB

/<ino 0,v2>/home<ino 1,v5>/greg<ino 5,v9>/

Mydir[10], total size 8MB
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Almost Awesome: Active Multi-MDS
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Active Multi-MDS

● Because no metadata is stored on MDS servers, migrating it is 

“easy”!
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Active Multi-MDS

Cooperative Partitioning between servers:

● Keep track of how hot metadata is

● Migrate subtrees to keep heat distribution similar

– Cheap because all metadata is in RADOS

● Maintains locality
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Active Multi-MDS: What's short

● MDS failure/recovery in general is more complicated with >1 

active MDS

– The coding is detailed and takes time to get right

● Testing

● Targeted for Luminous

...but we’ll see
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Almost Awesome: Snapshots
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Snapshots: Disk Data Structures

● Arbitrary sub-tree snapshots of the hierarchy

● Metadata stored as old_inode_t map in memory/disk

● Data stored in RADOS object snapshots

/<v2>/home<v5>/greg<v9>/foo

1342.0

foo -> ino 1342, 4 MB, [<1>,<3>,<10>]

bar -> ino 1001, 1024 KBytes

baz -> ino 1242, 2 MB

/<ino 0,v2>/home<ino 1,v5>/greg<ino 5,v9>/

Mydir[01], total size 7MB
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Snapshots

● Arbitrary sub-tree snapshots of the hierarchy

● Metadata stored as old_inode_t map in memory/disk

● Data stored in RADOS object snapshots

/<v2>/home<v5>/greg<v9>/foo

1342.0/HEAD

/<v1>/home<v3>/greg<v7>/foo

1342.0/1
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Snapshots: What's Short

● Testing. So much testing.

● The exciting combinatorial explosion of tracking all this across 

different metadata servers!

– Much of this exists; it's incomplete in various ways

– As always, recovering from other failures which impact our state 

transitions

● Targeted for after Luminous

– It works pretty well on single-MDS systems, but that’s boring
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Almost Awesome: Multi-FS
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MultiFS: What's Present

● You can create multiple filesystems within a RADOS cluster

– Different pools or namespaces

● Each FS gets its own MDS and has to be connected to 

independently
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MultiFS: What's Missing

● Testing: This gets limited coverage in our test suite

● Security model: we know where we're going, but it's not done

– Can't expose filesystem existence to users who aren't allowed to 

see it

● Post-luminous
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Pain Point: File Deletion
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File Deletion

● The MDS deletes RADOS objects in the background after files 

are unlinked

● This requires “pinning” the inode in memory

● Usually not a problem, unless you have so many deleting files 

your MDS memory cache fills up!
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File Deletion: The Fix

● Pull request pending: build a queueing system in RADOS

– https://github.com/ceph/ceph/pull/12786

– Add files to delete queue

– Pull them off and delete, in constant memory space

● This will be done for Luminous
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Pain Point: Client Trust
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Client Trust

● Clients can trash anything they can write

– Give clients separate namespaces!

● Clients can deny writes to anything they can read

– Don't share stuff across tenants

● Clients can DoS the MDS they attach to

– ...Multiple FSes in a cluster will fix this

● This is pretty fundamental. If you actively don’t trust your clients, 

put them behind an NFS gateway.
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Pain Point: Debugging Live Systems
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Exposing State: What's available

ceph daemon mds.a dump_ops_in_flijht
{
    "ops": [
        {
            "description": "client_request(client.
            "initiated_at": "2015-03-10 22:26:17.4
            "aje": 0.052026,
            "duration": 0.001098,
            "type_data": [
                "submit entry: journal_and_reply",
                "client.4119:21120",
...
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Exposing State: What's available

# ceph daemon mds.a session ls
...
  "client_metadata": {
    "ceph_sha1": "a19f92cf...",
    "ceph_version": "ceph version 0.93...",
    "entity_id": "admin",
    "hostname": "claystone",
    "mount_point": "\/home\/john\/mnt"
  }
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Exposing State: What's available

● ceph mds tell 0 dumpcache /path/to/dump/to

● Yes, it seriously dumps the full cache to a file
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Exposing State: What's missing

● Dumping individual dirs/dentries/inodes

● Good ways of identifying why things are blocked

● Tracking accesses to a file

● ...and other things we haven't thought of yet?
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Upcoming Stuff
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Erasure Coding (Overwrites)

● Instead of replicating across OSDs, give them shards and parity 

blocks

● Current EC RADOS pools are append only

– simple, stable suitable for RGW, or behind a cache tier

● Coming in Luminous: EC with overwrite support

– This will be slow at first, as it requires a two-phase commit and 

optimizations to be remotely efficient will follow

– Means you can store CephFS and RBD data at 1.5x instead of 3x 

cost, with same (or larger) number of node failures
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● BlueStore = Block + NewStore

– key/value database (RocksDB) for metadata

– all data written directly to raw block device(s)

– can combine HDD, SSD, NVMe, NVRAM

● Full data checksums (crc32c, xxhash)

● Inline compression (zlib, snappy, zstd)

● ~2x faster than FileStore

– better parallelism, efficiency on fast devices

– no double writes for data

– performs well with very small SSD journals

OSD: BLUESTORE

BlueStore

BlueFS

RocksDB

BlockDeviceBlockDeviceBlockDevice

BlueRocksEnv

data metadata

A
llo

c
a

to
r

ObjectStore
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m
p

re
s
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r

OSD
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● New implementation of network layer

– replaces aging SimpleMessenger

– fixed size thread pool (vs 2 threads per socket)

– scales better to larger clusters

– more healthy relationship with tcmalloc

– now the default!

● Pluggable backends

– PosixStack – Linux sockets, TCP (default, supported)

– Two experimental backends!

ASYNCMESSENGER
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CEPH-MGR

● ceph-mon monitor daemons currently do a lot

– more than they need to (PG stats to support things like 'df')

– this limits cluster scalability

● ceph-mgr moves non-critical metrics into a

separate daemon

– that is more efficient

– that can stream to graphite, influxdb

– that can efficiently integrate with external modules (even Python!)

● Good host for

– integrations, like Calamari REST API endpoint

– coming features like 'ceph top' or 'rbd top'

– high-level management functions and policy

M M

???
(time for new iconography)
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Who Should Use CephFS?
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CephFS Users

● Some vendors are targeting it at OpenStack users, since it pairs 

so well with RBD

● CephFS is good at large files

– It does well with small files for a distributed FS, but there’s no 

comparing to a local FS

● CephFS for home directories?

– If your users are patient or metadata can all be cached, but 

remember you want very new clients to get all the bug fixes

● Anybody who likes exploring: go for it!
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FOR MORE INFORMATION

● docs

– http://docs.ceph.com/

– https://github.com/ceph

● help

– ceph-users@ceph.com, ceph-devel@vger.kernel.org

– #ceph, #ceph-devel on irc.oftc.net

mailto:ceph-users@ceph.com
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THANK YOU!

Greg Farnum

gfarnum@

redhat.com

@gregsfortytwo
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