
CephFS:
The Stable
Distributed
Filesystem

Greg Farnum

2

Hi, I'm Greg

Greg Farnum

Ceph developer since 2009

Principal Software Engineer, Red Hat

gfarnum@redhat.com

3

Overview

● What is Ceph/Cephfs

● CephFS: What Works

– It's a distributed POSIX filesystem!

– There are many niceties that go with that

● CephFS: What Doesn't Work (Yet)

– Directory fragmentation

– Erasure Coding

– Multi-Active MDS

– Snapshots

● Pain Points & Use Cases

4

Where Does Ceph Come From?

● Then: UC Santa Cruz Storage Research

Systems Center

● Long-term research project in petabyte-

scale storage

● trying to develop a Lustre successor.

● Now: Red Hat, a commercial open-source

software & support provider you might have

heard of :)

(Mirantis, SuSE, Canonical, 42on, Hastexo, ...)

● Building a business; customers in virtual block

devices and object storage

● ...and reaching for filesystem users!

5

RADOS

A reliable, autonomous, distributed object store comprised of self-healing, self-managing,

intelligent storage nodes

RADOS

A reliable, autonomous, distributed object store comprised of self-healing, self-managing,

intelligent storage nodes

LIBRADOS

A library allowing

apps to directly

access RADOS,

with support for

C, C++, Java,

Python, Ruby,

and PHP

LIBRADOS

A library allowing

apps to directly

access RADOS,

with support for

C, C++, Java,

Python, Ruby,

and PHP

RBD

A reliable and fully-

distributed block

device, with a Linux

kernel client and a

QEMU/KVM driver

RBD

A reliable and fully-

distributed block

device, with a Linux

kernel client and a

QEMU/KVM driver

RADOSGW

A bucket-based

REST gateway,

compatible with S3

and Swift

RADOSGW

A bucket-based

REST gateway,

compatible with S3

and Swift

APPAPP APPAPP HOST/VMHOST/VM CLIENTCLIENT

CEPH FS

A POSIX-compliant

distributed file

system, with a

Linux kernel client

and support for

FUSE

CEPH FS

A POSIX-compliant

distributed file

system, with a

Linux kernel client

and support for

FUSE

NEARLY

AWESOME

AWESOMEAWESOME

AWESOME

AWESOME

6

Now: Fully Awesome

RGW
web services gateway for

object storage, compatible

with S3 and Swift

LIBRADOS
client library allowing apps to access RADOS (C, C++, Java, Python, Ruby, PHP)

RADOS
software-based, reliable, autonomous, distributed object store comprised of

self-healing, self-managing, intelligent storage nodes and lightweight monitors

RBD
reliable, fully-distributed

block device with cloud

platform integration

CEPHFS
distributed file system with

POSIX semantics and scale-

out metadata management

APP HOST/VM CLIENT

RADOS CLUSTER

7

APPLICATION

M M

M M

M

RADOS CLUSTER

WHERE DO OBJECTS LIVE?

8

??

APPLICATION

M

M

M

OBJECT

A METADATA SERVER?

9

1

APPLICATION

M

M

M

2

CALCULATED PLACEMENT

10

FAPPLICATION

M

M

M

A-G

H-N

O-T

U-Z

CRUSH IS A QUICK CALCULATION

11

RADOS CLUSTER

OBJECT

10

01

01

10

10

01 11

01

1001

0110 10 01

11

01

12

CRUSH AVOIDS FAILED DEVICES

RADOS CLUSTER

OBJECT

10

01

01

10

10

01 11

01

1001

0110 10 01

11

01

10

CRUSH: DYNAMIC DATA PLACEMENT

13

CRUSH:

 Pseudo-random placement algorithm

 Fast calculation, no lookup

 Repeatable, deterministic

 Statistically uniform distribution

 Stable mapping

 Limited data migration on change

 Rule-based configuration

 Infrastructure topology aware

 Adjustable replication

 Weighting

DATA IS ORGANIZED INTO POOLS

14

CLUSTER

OBJECTS

10

01

01

10

10

01 11

01

1001

0110 10 01

11

01

POOLS
(CONTAINING PGs)

10

01

11

01

10

01

01

10

01

10

10

01

11

01

10

01

10 01 10 11

01

11

01

10

10

01

01

01

10

10

01

01

POOL

A

POOL

B

POOL C

POOL

DOBJECTS

OBJECTS

OBJECTS

RADOS COMPONENTS

15

OSDs:

 10s to 10000s in a cluster

 One per disk (or one per SSD, RAID group…)

 Serve stored objects to clients

 Intelligently peer for replication & recovery

Monitors:

 Maintain cluster membership and state

 Provide consensus for distributed decision-making

 Small, odd number

 These do not serve stored objects to clients

M

16

RADOS: FAILURE RECOVERY

● Each OSDMap is numbered with an epoch number

● The Monitors and OSDs store a history of OSDMaps

● Using this history, an OSD which becomes a new member of a

PG can deduce every OSD which could have received a write

which it needs to know about

● The process of discovering the authoritative state of the objects

stored in the PG by contacting old PG members is called

Peering

17

11Epoch 20220: 5

RADOS: FAILURE RECOVERY

18

11Epoch 20220: 305

Epoch 20113: 305

11Epoch 19884: 305

30

RADOS: FAILURE RECOVERY

L

LIBRADOS: RADOS ACCESS FOR APPS

19

LIBRADOS:

 Direct access to RADOS for applications

 C, C++, Python, PHP, Java, Erlang

 Direct access to storage nodes

 No HTTP overhead

 Rich object API

 Bytes, attributes, key/value data

 Partial overwrite of existing data

 Single-object compound atomic operations

 RADOS classes (stored procedures)

20

Existing Awesome Ceph Stuff

THE RADOS GATEWAY

21

M M

M

RADOS CLUSTER

RADOSGW

LIBRADOS

socket

RADOSGW

LIBRADOS

APPLICATION APPLICATION

REST

RADOSGW MAKES RADOS WEBBY

22

RADOSGW:

 REST-based object storage proxy

 Uses RADOS to store objects

 API supports buckets, accounts

 Usage accounting for billing

 Compatible with S3 and Swift applications

STORING VIRTUAL DISKS

23

M M

RADOS CLUSTER

HYPERVISOR

LIBRBD

VM

RBD STORES VIRTUAL DISKS

24

RADOS BLOCK DEVICE:

 Storage of disk images in RADOS

 Decouples VMs from host

 Images are striped across the cluster (pool)

 Snapshots

 Copy-on-write clones

 Support in:

 Mainline Linux Kernel (2.6.39+)

 Qemu/KVM

 OpenStack, CloudStack, Nebula, Proxmox

25

CephFS, The Awesome Parts

26

Hammer (LTS)

Spring 2015

Jewel (LTS)

Spring 2016

Infernalis

Fall 2015

Kraken

Fall 2016

Luminous (LTS)

Spring 2017

Awesomeness Timeline

10.2.z

12.2.z

0.94.z

Pre-Awesome Some Awesome
More Awesome

27

Awesome: It's A Filesystem!

28

POSIX Filesystem

● Mounting, from multiple clients

– Not much good without that!

● POSIX-y goodness:

– Atomic updates

– Files, with names and directories and rename

● Coherent caching

– Updates from one node are visible elsewhere, immediately

29

LINUX HOST

M M

M

RADOS CLUSTER

KERNEL MODULE

datametadata
01

10

Ceph-fuse,
samba,
Ganesha

30

POSIX Filesystem: Consistency

● CephFS has “consistent caching”

● Clients are allowed to cache, and the server invalidates them

before making changes

– This means clients never see stale data of any kind!

– And there's no opportunity for any kind of split brain situation

31

POSIX Filesystem: Scaling Data

● All data is stored in RADOS

● Filesystem clients write directly to RADOS

● Need more data space? Add more OSDs!

● Faster throughput?

– Faster SSDs!

– Wider striping of files across objects!

– ...at least, up until you're limited by latency instead of throughput

32

POSIX Filesystem: Scaling Metadata

● Only active metadata is stored in memory

● Size your metadata server (MDS) by active set size, not total

metadata

33

rstats are cool

ext4 reports tirs as 4K

ls -lhd /ext4/data

drwxrwxr-x. 2 john john 4.0K Jun 25 14:58
/home/john/data

cephfs reports tir size from contents

$ ls -lhd /cephfs/mydata

drwxrwxr-x. 1 john john 16M Jun 25 14:57 ./mydata

34

Awesome: A Security Model

35

CephX security capabilities

● Clients start out unable to access the MDS.

– Incrementally granted permissions for subtrees (or the whole tree)

– To act as a specific user

– Etc

● For real security, these must be coordinated with OSD caps:

ceph auth get-or-create client.foo \

 mds “allow rw path=/foodir” \

 osd “allow rw pool=foopool” \

 mon “allow r”

36

CephX security capabilities: Protection

● The security capabilities are encrypted by the server; can't be

changed by client

● MDS only examines MDS grants

– Protects against acting as an unauthorized user

– Prevents all access to inodes/dentries not under granted path

● OSDs independently examine OSD grants

– Protects against access to unauthorized pools and namespaces

● Possible hole: if clients share namespace+pool, they can trample on

raw file data

– If you don't trust your clients, give them each their own namespace (free

for RADOS) and specify it in CephFS layout for their directory hierarchy

37

Awesome: Hot standby MDS

38

Standby servers

● Nothing ties metadata to a particular server!

● Spin up an arbitrary number of “standby” and “standby-replay”

servers

– Standby: just waiting around; can be made active

– Standby-replay: actively replaying the MDS log

● Warms up the cache for fast takeover

rename /tmp/file1 -> /home/greg/foo

rename /tmp/file2 -> /home/greg/bar

create /home/greg/baz

39

Standby servers: reconnect

● Replay log, load all necessary file data from RADOS

● Let clients replay uncommitted operations, process them

● Synchronize caching states between clients and MDS

● Go active!

40

Mostly Awesome: Scrub/Repair

41

Forward Scrub

● Forward scrubbing, to ensure consistency

ceph daemon mds.<id> scrub_path

ceph daemon mds.<id> scrub_path recursive

ceph daemon mds.<id> scrub_path repair

ceph daemon mds.<id> tag path

● You have to run this manually right now, no automatic

background scrub :(

– Fix: targeted for Luminous! With multi-MDS support!

42

Repair tools: cephfs-journal-tool

● Disaster recovery for damaged journals:

– inspect/import/export/reset

– header get/set

– event recover_dentries

● Allows rebuild of metadata that exists in journal but is lost on

disk

● Companion cephfs-table-tool exists for resetting

session/inode/snap tables as needed afterwards.

43

Repair tools: cephfs-data-scan

● “Backwards scrub”

● Iterate through all RADOS objects and tie them back to the

namespace

● Parallel workers, thanks to new RADOS functionality

– cephfs-data-scan scan_extents

– cephfs-data-scan scan_inodes

44

Repair tool methods

● Examine object names and send inferred stat info to “root”

object

1000.1

/<v2>/home<v5>/greg<v9>/foo

1000.0

45

foo -> ino 1342, 6 MB

bar -> ino 1001,1024 bytes

baz -> ino 1242, 2 MB

/<ino 0,v2>/home<ino 1,v5>/greg<ino 5,v9>/

mydir, total size 2074 bytes

Repair tool methods

● Assemble tree information from backtrace and inferred stat

/<v2>/home<v5>/greg<v9>/foo

1342.0

46

Repair tool methods

● Do inference and then insertion in parallel across the cluster

M M

M M

M

RADOS CLUSTER

47

CephFS: The Parts You Don't Get

48

Almost Awesome: Directory Frags

49

Directory Fragmentation

● Directories are generally loaded from disk as a unit

– But sometimes that's too much data at once!

– Or you want to spread a hot directory over many active MDSes

foo -> ino 1342, 4 MB

bar -> ino 1001, 1024 KBytes

baz -> ino 1242, 2 MB

/<ino 0,v2>/home<ino 1,v5>/greg<ino 5,v9>/

Mydir[01], total size 7MB

hi -> ino 1000, 6 MB

hello -> ino 6743, 1024 KB

whaddup -> ino 9872, 1 MB

/<ino 0,v2>/home<ino 1,v5>/greg<ino 5,v9>/

Mydir[10], total size 8MB

50

Directory Fragmentation: What's Short

● It's not well-tested

– Just need to do the QA work

– Expected in Luminous

foo -> ino 1342, 4 MB

bar -> ino 1001, 1024 KBytes

baz -> ino 1242, 2 MB

/<ino 0,v2>/home<ino 1,v5>/greg<ino 5,v9>/

Mydir[01], total size 7MB

hi -> ino 1000, 6 MB

hello -> ino 6743, 1024 KB

whaddup -> ino 9872, 1 MB

/<ino 0,v2>/home<ino 1,v5>/greg<ino 5,v9>/

Mydir[10], total size 8MB

51

Almost Awesome: Active Multi-MDS

52

Active Multi-MDS

● Because no metadata is stored on MDS servers, migrating it is

“easy”!

53

Active Multi-MDS

Cooperative Partitioning between servers:

● Keep track of how hot metadata is

● Migrate subtrees to keep heat distribution similar

– Cheap because all metadata is in RADOS

● Maintains locality

54

Active Multi-MDS: What's short

● MDS failure/recovery in general is more complicated with >1

active MDS

– The coding is detailed and takes time to get right

● Testing

● Targeted for Luminous

...but we’ll see

55

Almost Awesome: Snapshots

56

Snapshots: Disk Data Structures

● Arbitrary sub-tree snapshots of the hierarchy

● Metadata stored as old_inode_t map in memory/disk

● Data stored in RADOS object snapshots

/<v2>/home<v5>/greg<v9>/foo

1342.0

foo -> ino 1342, 4 MB, [<1>,<3>,<10>]

bar -> ino 1001, 1024 KBytes

baz -> ino 1242, 2 MB

/<ino 0,v2>/home<ino 1,v5>/greg<ino 5,v9>/

Mydir[01], total size 7MB

57

Snapshots

● Arbitrary sub-tree snapshots of the hierarchy

● Metadata stored as old_inode_t map in memory/disk

● Data stored in RADOS object snapshots

/<v2>/home<v5>/greg<v9>/foo

1342.0/HEAD

/<v1>/home<v3>/greg<v7>/foo

1342.0/1

58

Snapshots: What's Short

● Testing. So much testing.

● The exciting combinatorial explosion of tracking all this across

different metadata servers!

– Much of this exists; it's incomplete in various ways

– As always, recovering from other failures which impact our state

transitions

● Targeted for after Luminous

– It works pretty well on single-MDS systems, but that’s boring

59

Almost Awesome: Multi-FS

60

MultiFS: What's Present

● You can create multiple filesystems within a RADOS cluster

– Different pools or namespaces

● Each FS gets its own MDS and has to be connected to

independently

61

MultiFS: What's Missing

● Testing: This gets limited coverage in our test suite

● Security model: we know where we're going, but it's not done

– Can't expose filesystem existence to users who aren't allowed to

see it

● Post-luminous

62

Pain Point: File Deletion

63

File Deletion

● The MDS deletes RADOS objects in the background after files

are unlinked

● This requires “pinning” the inode in memory

● Usually not a problem, unless you have so many deleting files

your MDS memory cache fills up!

64

File Deletion: The Fix

● Pull request pending: build a queueing system in RADOS

– https://github.com/ceph/ceph/pull/12786

– Add files to delete queue

– Pull them off and delete, in constant memory space

● This will be done for Luminous

65

Pain Point: Client Trust

66

Client Trust

● Clients can trash anything they can write

– Give clients separate namespaces!

● Clients can deny writes to anything they can read

– Don't share stuff across tenants

● Clients can DoS the MDS they attach to

– ...Multiple FSes in a cluster will fix this

● This is pretty fundamental. If you actively don’t trust your clients,

put them behind an NFS gateway.

67

Pain Point: Debugging Live Systems

68

Exposing State: What's available

ceph daemon mds.a dump_ops_in_flijht
{
 "ops": [
 {
 "description": "client_request(client.
 "initiated_at": "2015-03-10 22:26:17.4
 "aje": 0.052026,
 "duration": 0.001098,
 "type_data": [
 "submit entry: journal_and_reply",
 "client.4119:21120",
...

69

Exposing State: What's available

ceph daemon mds.a session ls
...
 "client_metadata": {
 "ceph_sha1": "a19f92cf...",
 "ceph_version": "ceph version 0.93...",
 "entity_id": "admin",
 "hostname": "claystone",
 "mount_point": "\/home\/john\/mnt"
 }

70

Exposing State: What's available

● ceph mds tell 0 dumpcache /path/to/dump/to

● Yes, it seriously dumps the full cache to a file

71

Exposing State: What's missing

● Dumping individual dirs/dentries/inodes

● Good ways of identifying why things are blocked

● Tracking accesses to a file

● ...and other things we haven't thought of yet?

72

Upcoming Stuff

73

Erasure Coding (Overwrites)

● Instead of replicating across OSDs, give them shards and parity

blocks

● Current EC RADOS pools are append only

– simple, stable suitable for RGW, or behind a cache tier

● Coming in Luminous: EC with overwrite support

– This will be slow at first, as it requires a two-phase commit and

optimizations to be remotely efficient will follow

– Means you can store CephFS and RBD data at 1.5x instead of 3x

cost, with same (or larger) number of node failures

74

● BlueStore = Block + NewStore

– key/value database (RocksDB) for metadata

– all data written directly to raw block device(s)

– can combine HDD, SSD, NVMe, NVRAM

● Full data checksums (crc32c, xxhash)

● Inline compression (zlib, snappy, zstd)

● ~2x faster than FileStore

– better parallelism, efficiency on fast devices

– no double writes for data

– performs well with very small SSD journals

OSD: BLUESTORE

BlueStore

BlueFS

RocksDB

BlockDeviceBlockDeviceBlockDevice

BlueRocksEnv

data metadata

A
llo

c
a

to
r

ObjectStore

C
o

m
p

re
s
s
o

r

OSD

75

● New implementation of network layer

– replaces aging SimpleMessenger

– fixed size thread pool (vs 2 threads per socket)

– scales better to larger clusters

– more healthy relationship with tcmalloc

– now the default!

● Pluggable backends

– PosixStack – Linux sockets, TCP (default, supported)

– Two experimental backends!

ASYNCMESSENGER

76

CEPH-MGR

● ceph-mon monitor daemons currently do a lot

– more than they need to (PG stats to support things like 'df')

– this limits cluster scalability

● ceph-mgr moves non-critical metrics into a

separate daemon

– that is more efficient

– that can stream to graphite, influxdb

– that can efficiently integrate with external modules (even Python!)

● Good host for

– integrations, like Calamari REST API endpoint

– coming features like 'ceph top' or 'rbd top'

– high-level management functions and policy

M M

???
(time for new iconography)

77

Who Should Use CephFS?

78

CephFS Users

● Some vendors are targeting it at OpenStack users, since it pairs

so well with RBD

● CephFS is good at large files

– It does well with small files for a distributed FS, but there’s no

comparing to a local FS

● CephFS for home directories?

– If your users are patient or metadata can all be cached, but

remember you want very new clients to get all the bug fixes

● Anybody who likes exploring: go for it!

79

FOR MORE INFORMATION

● docs

– http://docs.ceph.com/

– https://github.com/ceph

● help

– ceph-users@ceph.com, ceph-devel@vger.kernel.org

– #ceph, #ceph-devel on irc.oftc.net

mailto:ceph-users@ceph.com

80

THANK YOU!

Greg Farnum

gfarnum@

redhat.com

@gregsfortytwo

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	RADOS CLUSTER
	WHERE DO OBJECTS LIVE?
	A METADATA SERVER?
	CALCULATED PLACEMENT
	CRUSH IS A QUICK CALCULATION
	Folie 12
	CRUSH: DYNAMIC DATA PLACEMENT
	DATA IS ORGANIZED INTO POOLS
	RADOS COMPONENTS
	Folie 16
	Folie 17
	Folie 18
	LIBRADOS: RADOS ACCESS FOR APPS
	Folie 20
	THE RADOS GATEWAY
	RADOSGW MAKES RADOS WEBBY
	STORING VIRTUAL DISKS
	RBD STORES VIRTUAL DISKS
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Folie 35
	Folie 36
	Folie 37
	Folie 38
	Folie 39
	Folie 40
	Folie 41
	Folie 42
	Folie 43
	Folie 44
	Folie 45
	Folie 46
	Folie 47
	Folie 48
	Folie 49
	Folie 50
	Folie 51
	Folie 52
	Folie 53
	Folie 54
	Folie 55
	Folie 56
	Folie 57
	Folie 58
	Folie 59
	Folie 60
	Folie 61
	Folie 62
	Folie 63
	Folie 64
	Folie 65
	Folie 66
	Folie 67
	Folie 68
	Folie 69
	Folie 70
	Folie 71
	Folie 72
	Folie 73
	Folie 74
	Folie 75
	Folie 76
	Folie 77
	Folie 78
	Folie 79
	Folie 80

