
10 Ways to Kill Performance.

Christophe Pettus
PostgreSQL Experts, Inc.

PgDay SCALE 9x
25 February 2011

Greetings.

• Hi, I’m Christophe.

• http://thebuild.com/

• PostgreSQL user/developer since 1997

• 7.2 instance still running!

• Consultant with PostgreSQL Experts, Inc.

• http://pgexperts.com/

http://pgexperts.com
http://pgexperts.com

This Talk Brought to
You By…

• PostgreSQL Experts, Inc.

• DayQuil®

Dualist Heresies in the
Byzantine Empire,
 1130-1195AD.

Why Break
Performance?

• Passive-Aggressive Response to Employer.

• General Rage Against the World.

• Fixing a Customer Complaint in Bizarro
World. (“DB run too fast!”)

• Or, You Actually Want to Improve
Performance.

Method 1:
Entity-Attribute-Value

Schemas are for suckers.

EAV?

• A single table for highly heterogenous
values.

• Generally has a foreign key (“entity”), a
column for the entity’s semantics
(“attribute”), and a column for the value.

ENTITY ATTRIBUTE VALUE

12 NAME Herman Munster

12 ADDRESS-1
1313

MOCKINGBIRD
LANE

How does that kill
peformance?

• Monstrous to join over.

• Makes it hard (if not impossible) to enforce
consistency at the database level.

• Everything’s a string!

• Increases the number of tuples (and thus
database overhead).

Then why do it?

• Frequently found in ports from old-skool
databases.

• Handy for user-defined values in a packaged
application.

• PostgreSQL does have DDL. You might
check it out.

Method 2:
Little Teeny Tuples

Why “best practice” isn’t always.

Denormalization is
Bad, Right?

• Right. Never do it.

• Never?

• No, never!

• NEVER?

• Well, hardly ever.

Let’s Take an Example

• Primary table: 1.2 billion rows.

• Each row has a variable number of
“attributes.”

• Each attribute is a boolean (present/
absent).

• 3-12 attributes per primary row.

So, we do this, right?

CREATE TABLE secondary (

 primary_row BIGINT REFERENCES primary(pk),

 attribute INTEGER REFERENCES attributes(pk)

) PRIMARY KEY (primary_row, attribute);

Why does that kill
performance?

• Suddenly, we have a new table with 18+
billion rows.

• Have fun joining over that sucker.

• Each row has a significant overhead.

• And then… indexes!

So, what should we do?

• Depends on the access model.

• What’s the selectivity of different
attributes?

• intarray

• bit vector with indexes

Method 3:
work_mem

A consultant’s retirement plan in a single setting!

work_mem

• How much memory to assign to a hash /
sort / group operation.

• Per planner node, not per query or per
session.

• Out of the box, it’s one megabyte.

A typical client
interaction

• “This query is really really slow.”

• “What does it do?”

• “It takes 125 million rows and groups them
down to 8.”

• “Let me see your postgresql.conf”

• “Hmm. I think I can help here.”

Next Stop, Cabo!

How does this kill
performance?

• Spills big hash / sort / group operations to
disk.

• Disks are slow. (You may have heard this.)

• 1MB is usually too low.

What to do?

• Bump it up!

• It’s a hard value to get right.

• Too small, performance issues.

• Too high, out of memory problems.

• Monitor, monitor, monitor.

• EXPLAIN ANALYZE is your friend.

Method 4:
Mix ‘n’ Match Info

Don’t join! You’ll kill yourself!

Base vs Derived
Information.

• Base information are facts about the row
that rarely change once created.

• Name, date of birth, gender.

• Derived information is dynamic and
changes frequently.

• Last ordered, incarceration status.

Slam it into one table!

• Everyone will need to write to the same
row, all the time.

• Think of the fun you’ll have debugging
locking conflicts!

• It’s even more exciting if multiple
applications have different sets of derived
information.

How does this kill
performance?

• Deadlock, deadlock, deadlock.

• Single-file through the record.

• Different applications need to know each
other’s access patterns.

So, what do to?

• Separate derived information into a
separate table.

• 1:1 relationship, so joining is efficient.

• Different applications are isolated, so fewer
conflicts.

Method 5:
Poll the Database

“Got anything for me? How about now? Huh, huh,
c’mon, you must have something for me now…”

Databases are great!

• Simple API.

• Consistency.

• Crash recovery.

• Concurrency controls.

• Let’s use them FOR EVERYTHING IN THE
ENTIRE WORLD EVAR!

Like, Say, Task Queues!

• Producer inserts a task into a task queue
table.

• Consumers poll the database looking for
new work.

• Profit, right?

Wrong.

• High rates of polling crush the database.

• Low rates of polling make inefficient use of
the consumers.

• It’s actually quite hard to get the guarantees
right.

What do to?

• Use a dedicated task queuing product for
task queuing.

• If you must use the database, use LISTEN /
NOTIFY.

• Never, ever, ever poll the database on a high
duty cycle.

Method 6:
Long Transactions

“This transaction has been open since July 2, 2001.

We call it ‘Edward.’”

PostgreSQL Rocks
Transactions.

• PostgreSQL has very light-weight
transactions, compared to other high-
powered databases.

• Remember the rollback buffer? Yeah, that
was a lot of fun.

• But with great power comes great
responsibility.

Don’t Do This.

• User selects a record in a GUI application.

• Opens it for editing, opening a transaction.

• Goes to lunch.

• Decides to move to Croatia.

• Transaction is still open five months later.

What’s the big deal?

• <IDLE IN TRANSACTION>

• Holds system resources.

• Blocks VACUUM.

• Heaven help you if the transaction is
holding locks.

“I’d never do that!”

• You probably wouldn’t.

• But is your ORM, API library, or pooler on
the same page?

• Django is notorious for this.

• Monitor, monitor, monitor.

Method 7:
The Single Row

“One row to rule them all, one row to find them…”

We all have them.

• “Settings.”

• “Preferences.”

• “Control information.”

• “You know, that row. In the table. With the
stuff.”

It’s all fun and games…

• Until someone holds a lock.

• And, suddenly, the database is single-
threaded.

• Or deadlocks start appearing left and right.

“I’d Never Do That!”

• Yeah, right.

• Do you really know what transaction
model you are using?

• Really?
• Particularly bad with ORMs that attempt to

“help” you with transactions.

So, what to do?

• Don’t hold a transaction open on
singletons.

• Get in, say what you need to say, get out.

• Understand what transaction model your
frameworks are giving you.

Method 8:
Attack of the BLOB

“Magic Database Disk Access Powers, Activate!”

Clients Love Databases.

• Sometimes to death.

• “We want to store these images in a
database.”

• “How big are they?”

• “Oh, 64MB apiece.”

• “Uh, why store them in the database?”

DATABASES ARE
FAST!

• PostgreSQL doesn’t have a special red
phone to the underlying disk.

• It’s not designed to handle very large
objects, although it does a heroic job of it if
you ask.

• There’s no magic.

So, what do to?

• Every OS has a database optimized for the
manipulation of large binary objects.

• It’s called a “file system.”

• Know it, use it.

• To be fair, databases do offer some
advantages… but superior disk I/O isn’t
among them.

Method 9:
Partitioning Disasters

Partitioning is the chemotherapy of databases.

Partitioning

• Using table inheritance to split a single
table up into multiple children…

• … on the basis of a partitioning key.

• It can do amazing things for performance…

IN THE RIGHT
SITUATION.

• Data can be divided into roughly-equal
sized “buckets” based on the partitioning
key.

• Queries tend to land in a (very) small
number of those buckets.

PARTITIONING KILLS!

• … in the wrong circumstances.

• Queries span large number of partitions.

• Partitions of extremely unequal size.

• Confusion about the data model.

So, what do we do?

• Partitioning is great…

• … in the right situation.

• In the wrong one, it can make things much,
much, MUCH worse.

• The final partition merge can be the
death of a query.

Method 10:
Lots of Indexes

“If adding one index is good…”

Let’s index
EVERYTHING!

• What can go wrong?

• After all, if it never uses an index, what’s the
overhead?

• (pause)

• Oh. That’s the overhead, hm?

Good Indexes.

• High selectivity on common queries.

• Required to enforce constraints.

Bad Indexes.

• Pretty much everything else.

• Bad selectivity.

• Rarely used.

• Expensive to maintain compared to the
query acceleration.

• FTS particularly vulnerable to this.

Stupid Indexing Tricks

• Multi-level indexes.

• Ordering is very important.

• Expensive functional indexes.

• Small variations that defeat index usage.

• Redundant indexes.

• PKs, text_pattern_ops

Bonus Method:
Date/Time Functions!

Even a broken timezone is right twice a year.

Pop Quiz!

• What’s interesting about this calculation?

•SELECT '2011-03-13
02:00'::TIMESTAMPTZ + '1
hour'::INTERVAL;

2 + 1 = 4!

 ?column?

 2011-03-13 04:00:00-07

(1 row)

This is absolutely
correct.

• PostgreSQL is correctly handling the time
offset change.

• There is an unfortunate side-effect, though.

• Calculations on TIMESTAMPTZs are
VOLATILE.

This can be…
surprising.

• Defeats queries on indexes.

• Defeats partition constraints.

• Hey, you could be doing a query at the
exact moment a timezone shift happens!

• No, really, it could happen.

So, what do to?

• Precalculate TIMESTAMPTZs before doing
queries on them.

• Understand what this means in terms of
your query ranges.

• … and be glad that PG isn’t Oracle.

Questions?

Sorry, I don’t actually know anything about dualist
heresies in the Byzantine Empire. I’m sure they rocked.

Thanks.

cpettus@pgexperts.com
xof@thebuild.com

mailto:cpettus@pgexperts.com
mailto:cpettus@pgexperts.com
mailto:xof@thebuild.com
mailto:xof@thebuild.com

