
1 of 13

David Rientjes
rientjes@google.com

SCALE 9X

February 26, 2011
Los Angeles, California

Status of theStatus of the
Linux Slab AllocatorsLinux Slab Allocators

mailto:rientjes@google.com

2 of 13

Status of the Linux Slab AllocatorsStatus of the Linux Slab Allocators

● As of 2.6.37.1, the latest stable release kernel

● When configuring a kernel.org kernel, few users can make
an informed decision on which slab allocator use

● defconfig is of little help, CONFIG_SLUB regresses
significantly on some workloads

● Requires a rebuild to change

● How do you choose which slab allocator to use?

● For systems running a consistent set of workloads, how do
you determine what is in your best interest?

● For systems running a wide variety of workloads, what
trade-offs do you have to make when making a decision?

3 of 13

SLUBSLUB

● Unqueued slab allocator, enabled in defconfig

● Merges slab caches with same properties together for cpu cache
optimizations

● Object allocation from cpu slab (fastpath), larger orders help

● If full, fallback to per-node partial lists with per-node locking

● Ordering of partial list can cause “slab thrashing” depending on allocation
and freeing pattern

● Worst-case: allocate new slab from the page allocator, requires a fast
page allocator

● Object free to cpu slab (fastpath)

● Otherwise, free to full or partial slab and update partial lists as necessary

● When slab is empty, it can be freed back to the buddy allocator unless it
should stay on the partial list

4 of 13

SLUB DebuggingSLUB Debugging

● Much superior debugging support to any other allocator

● Can be enabled per slab cache rather than globally

● No kernel rebuild is necessary, only reboot to activate via command
line or sysfs interface

● Poisoning: detects use-after-free

● Red zoning: detects use before and after object

● User tracking: stores alloc and free caller

● Tracing: emits full stack on alloc and free to the kernel log (very
verbose)

● Slab cache merging may spew too much information or obfuscate
the cause of a problem (may be disabled)

● May increase the slab order to increase as a result (may be
disabled)

5 of 13

SLABSLAB

● Deprecated, very little development

● Many distributions still ship with CONFIG_SLAB even though it is not
the kernel default

● Object allocation from array of free objects (fastpath)

● Otherwise, refill array with shared objects that have same memory
affinity, if possible

● If not, allocate object from partial slabs and fallback to the page
allocator if necessary

● Object free returns objects with affinity to local array, otherwise frees
alien cache

● Respects thread's mempolicy and attempts to allocate from correct
node, if possible

● Cache reaper runs every few seconds and attempts to clear the per-
cpu caches and free empty slab, if possible

6 of 13

SLOBSLOB

● “Simple List of Blocks” heap allocator with alignment and
NUMA support

● Very small memory footprint (less than a page of text)

● Slab pages organized into linked-list of free blocks

● Separate lists depending on object size (<256 bytes, <1024
bytes, and all others) to reduce fragmentation

● Object allocation done by allocating first free set of blocks in
slab list

● No optimizations for cpu cache: allocation is done by
address, not queue

● Often used in embedded devices or machines with strict
RAM limitations

7 of 13

Tools for debugging and developmentTools for debugging and development

● failslab: fault injection for kmalloc(),
kmem_cache_alloc() to test error handling of new code

● kmemcheck: checks for use of uninitialized memory,
requires slab hooks for initialization

● kmemleak: scans through memory and emits the number
of unreferenced objects, check debugfs file for list

8 of 13

KernbenchKernbench

● Benchmarks cpu throughput using a kernel build

16-core machine with 32GB memory (4 nodes)
10 iterations

Half load Average load Maximal load

SLAB SLUB SLAB SLUB SLAB SLUB

Elapsed
time

9.960 9.864
(-1.0%)

6.197 5.998
(-3.2%)

6.266 6.281

User time 48.190 48.042 48.828 48.610 49.807 49.586

System
time

4.773 4.627
(-3.1%)

4.885 4.754
(-2.1%)

4.913 4.783
(-2.6%)

Percent
cpu

531.50 533.70 705.90 717.55
(+1.7%)

772.10 777.37

Context
switches

260.10 235.30
(-9.5%)

1670.35 1550.10
(-7.2%)

5224.37 5090.53
(-2.6%)

Sleeps 8601.30 8521.40
(-1.0%)

8895.80 8920.30 8437.73 8449.30

9 of 13

Netperf TCP_RRNetperf TCP_RR

● Benchmarks round-robin networking performance

16-core machines with 32GB memory (4 nodes) each
10 iterations, 60 seconds each

Threads SLAB SLUB

16 129667 116138 (-10.4%)

32 136506 120057 (-12.1%)

48 141470 125291 (-11.4%)

64 147653 131053 (-11.2%)

80 154212 134125 (-13.0%)

96 153331 134216 (-12.5%)

112 163065 134725 (-17.4%)

128 158108 136577 (-13.6%)

144 161774 144855 (-10.5%)

160 167896 151248 (-10.0%)

10 of 13

SLQBSLQB

● Queued allocator, initially proposed for systems not benefiting from SLUB

● Contains much of the core infrastructure of SLUB

● Object allocation from per-cpu freelist, minimizes cacheline bouncing and
returns hot objects (fastpath), otherwise fallback to partial list

● Freelist has a watermark that, when passed, flushes free objects back to
slab allowing them to be freed to the buddy allocator if empty

● Objects that are freed on different cpus on which they were allocated are
flushed to a remote freelist that eventually move back to the allocating
cpu

● Locking to reach into remotely freed lists is controlled by batching and
watermarks

● Currently abandoned, may resurface

11 of 13

SLUB+QSLUB+Q

● Effort to unify the best qualities of both SLAB and SLUB
using the queues from the former and infrastructure from the
latter, such as debugging

● Essentially makes the “unqueued” SLUB use a cpu queue

● Adds an object bitmap within the page struct for
management, can cause slight increase in memory usage

● Does not do cache reaping like SLAB, fully controlled by
page reclaim

● Respects mempolicies of allocating task on a per-object level

● Adds shared and alien caches for cross cpu allocations

● Still regresses for large machines on some benchmarks

● Little recent development

12 of 13

SLAMSLAM

● Mutable slab allocation system

● Intended as a drop-in replacement for all slab allocators
(ambitious)

● Predicated on the concept that all slab caches do not behave the
same

● Configurable per cache per cpu behavior depending on its usage
and memory requirements

● Single allocation fastpath, different slowpaths depending on
allocation and free patterns

● Advisable cache behavior within the kernel with
kmem_cache_advise()

● Adjustable via sysfs, including automatic flight

● Currently being developed

13 of 13

Slab allocation developmentSlab allocation development

● Subsystem co-maintainers

● Pekka Enberg <penberg@cs.helsinki.fi>
● Christoph Lameter <cl@linux.com>
● Matt Mackall <mpm@selenic.com>

● Additional development

● David Rientjes <rientjes@google.com>
● Nick Piggin <npiggin@suse.de>

● linux-mm@kvack.org mailing list, LKML

mailto:penberg@cs.helsinki.fi
mailto:cl@linux.com
mailto:mpm@selenic.com
mailto:rientjes@google.com
mailto:npiggin@suse.de
mailto:linux-mm@kvack.org

