

admin++, what root never told you

Ron Gorodetzky
ron@parktree.net

ron@digg.com

one or two lessons I learned while moving
beyond root to Systems Administration

who am I

● Avid GNU/Linux user for more than 6 years

– managed several small servers in that time
● Co-founder of Revision3

– sole IT member for the first year and a half
● Senior Systems Administrator at Digg

– managed root since before first public release
● Managing the volume that both these companies

experience was completely new to me

what problems do these companies
have to solve

● Revision3
– we produce and distribute audio/video content

(pod/vidcasts) (e.g. diggnation, indigital,
pixelperfect)

– over 100,000 downloads per week

– file sizes ranging from 150-600MB

– most downloads happen on the day of a release (big
bandwidth spikes)

– the website is popular, but needs only a small
fraction of the total resources needed to deliver
content

what problems do these companies
have to solve (continued)

● Digg
– user driven social content website. Content is

submitted, voted on, and commented on by the
community

– lots and Lots of hits/pageviews/visitors

– realtime-ish data (when you digg it is mostly-
immediately reflected on the site)

– unlike revision3 bandwidth usage is relatively low

sound advice

● Web 2.0 is here, surely web 3.0 is around the
corner

● Everyone is building a new application, websites,
and organizations that need infrastructures

● So, get some sleep, exercise, and be prepared for
lots of work ahead

● Your one server isn't going to hold up by itself
forever, start preparing now

● Read everything related to infrastructures, a lot
of it is really cool

what having root should have
taught you

● How to read documentation
● How to install software
● How to configure software
● How to read documentation
● How to troubleshoot some server issues
● How to setup simple networking
● How to read documentation

other things you hopefully learned

● Not to take the inner workings for granted
– file system limitations

– swap vs ram

● At least a little C
– pointers, especially of the NULL variety

● Scripting
– shell, python, perl

so you built your first web app

● You probably used a popular stack
– LAMP (PHP, Perl, Python)

– Ruby on Rails

– Turbogears / Pylons

● You share it with your friends
● Everyone thinks you're a genius
● You put up some ads, charge some money,

and try to make it big

and your organization probably
looks like this

Linux

Mysql

Apache

PHP

Easy!

Internet

at some point you'll need to grow

● You'll want a backup machine for
redundancy

● You'll want a development machine for
testing

● You'll want to serve more traffic (i.e.
Scale)
– first step is usually putting the database on a

separate server from the front end

who's had some good
ideas about scaling

● http://danga.com/words/2005_oscon/oscon-2005.pdf

– how to scale your web application

– everyone should read this
● http://labs.google.com/papers/

– especially mapreduce and google file system

Hopefully these will help you to start thinking about
your infrastructure in novel ways that you hadn't
considered before.

http://danga.com/words/2005_oscon/oscon-2005.pdf
http://labs.google.com/papers/

scaling basics

● Cache!

● Spread data/resource usage across multiple machines
(e.g. separate webserver and db)

● Often the basic frameworks won't be enough on their
own

– memcache

– mogilefs

– load balancing
● Basic scaling principles aren't that hard and can be

implemented entirely on one machine so try to be aware
of them and start to deal with it early.

these machines have to go
somewhere

● You'll need dedicated servers
● You can get more managed servers

– let the provider deal with network, server
maintenance, etc.

● Colocation
– take your servers there, but let them deal with

primary network issues

● Datacenter
– get yourself a space in a datacenter and do everything

yourself

or outsource

● Distributing large volumes of data is hard

– lots of bandwidth

– lots of computers

– great candidate for outsourcing (e.g. cachefly, bitgravity,
akamai)

● Doing lots of computations or storing lots of data can also
be hard

– clients contribute resources (e.g. folding@home, store
state in cookies not the DB)

– Amazon EC2 and S3 (I imagine more of these types of
services will pop up eventually)

● This keeps the # of resources you need to manage lower

mailto:folding@home

Power
Strip

console servers

switches

load balancer

memcached

in a datacenter your infrastructure
looks more like this

webservers

mysql

load
balancing

file serving
(mogileFS)

VPN

management

backup

monitoring

metrics

development

testing

email

groupware

cronjobs

blog

log server

routers

Internet

now you need to manage it all

● It's all remote
– equipment can't hear your threats of violence

– console servers and emergency modem connection are
your friends

● You'll need to use “enterprise” networking equipment

– bigger switches
● vlans are pretty cool

– bigger routers
● BGP, peering, fiber

● Remotely managed power strips

– control power to individual pieces of equipment (fun!)

servers need even more hand
holding

● You need to be able to interact with bad servers
remotely
– power and console

– IPMI (?)

● Server network reinstallation
– fai, kickstart, systemimager

● Server configuration
● Automate everything early and often !!
● Servers will die and everything should still

work!!!

what are some server management
tools

● CFEngine

– http://www.cfengine.org/
● Puppet

– http://reductivelabs.com/projects/puppet/index.html

● Bcfg2

– http://www.bcfg2.org
● ISConf

– http://trac.t7a.org/isconf/

– from the http://www.infrastructures.org people

http://www.cfengine.org/
http://reductivelabs.com/projects/puppet/index.html
http://www.bcfg2.org/
http://trac.t7a.org/isconf/
http://www.infrastructures.org/

some notes about these tools

● They each approach the problem of server
configuration in different ways

● There is no one Right Way (tm)
● Each organization has their own system
● So study all the options out there and use

the one that fits the infrastructure model
in your head

some datacenter advice

● Don't waste time making your own cables!
● Get wide, deep cable management
● Wire all possible ports

– with ethernet especially useful with vlan magic

● Decide on a labeling strategy
– but, no label is better than a wrong label!

● In a datacenter you're really paying for
power, not space, so feel free to resist the
urge to pack everything too tightly

monitoring and metrics

● You need to know when things go wrong
– SNMP, nagios, monit, openNMS

● You also want to track resource usage
– SNMP, cacti, ganglia, mrtg, openNMS

● Don't forget to monitor the monitoring
server!
– not getting pages is great, but can be the sign of a

problem

being investor friendly even if you
have none

● Don't spend too much money too fast

– FLOSS is of course great for this

– smart efficient designs help too

– good news: salaries are almost always more than equipment so
don't be afraid to get what you need

● User statistics

– you'll need to prove you really have the customers you claim

– web applications compete with other public numbers like alexa
and comscore

– reporters and investors may not believe your internal numbers so
you may need to outsource some web metrics to a third party

● due to privacy concerns you probably shouldn't take this
decision lightly

systems for the rest of the
organization

● you'll of course need email

– but you'll probably really need groupware (calendar,
contacts, etc.)

● Much of the business world has become accustomed to
MS exchange-style groupware

– should work with mobile devices

– should allow others to manage executive calendars
(e.g. secretaries and office managers)

● Project management

– bugzilla, trac, wikis

tracking your developments
(documenting everything)

● Development
– you want to track bugs and code releases

– this means you need conventions for development,
branches, and releases

● Operations
– keep track of all your equipment, connections, and

RMAs
● first spreadsheets/diagrams, then get more sophisticated

– keep track of changes, code pushes, and scripts

testing and deployment

● When you grow people have less tolerance
for things breaking.
– Myspace breaks this rule (search for “Inside

Myspace.com”)

● Have an testing environment that mimics
production

● Treat test code the same as you would
production

● But load does funny things to code and
servers so be prepared for strange failures

the value of going back and doing
things right (tm)

● If you don't do things correctly now you'll have
to do it later under more pressure and with less
time

● There will always be new better methodologies to
growing and managing an infrastructure

● Doing things a little better now will give you
some breathing room in the future

● Thoughtful software design should be
accompanied by thoughtful infrastructure design

questions?

● In bash you can't escape a single quote inside of single quotes, so you
have to do this:

– echo 'the quotes, they'\''re everywhere!'

● Regular expressions are great, but not always fast. Sometimes
processing strings the old fashioned way (by looking for characters of
interest one by one) is much much faster. (e.g. log processing, take a
look at how Visitors does it)

● Linux was mentioned in the first sketch of the first episode of Comedy
Central's Chappelle's Show. This is likely why it was such a success.

some random stuff for those who don't have questions

