

Intro to Patching

Thomas Cameron, RHCA, RHCSS, RHCDS, RHCVA, RHCX

Chief Architect, Western US, Red Hat
thomas@redhat.com
twitter: thomasdcameron
IRC: choirboy on Freenode

FOR PUBLIC RELEASE | THOMAS CAMERON2

Agenda

● Who am I?

● Who are you?

● What is patching?

● Types of patches

● How important are patches?

● From where do we get patches?

● How do I find out when I need patches?

● Think about patching when you design!

● What should we patch? What should we not patch?

FOR PUBLIC RELEASE | THOMAS CAMERON3

Agenda

● Buy vs. build patching systems

● Patch promotion

● Patching cycles

● Collaboration (Charlie Yankee Alpha)

● The future of patching

FOR PUBLIC RELEASE | THOMAS CAMERON4

Who am I?

FOR PUBLIC RELEASE | THOMAS CAMERON5

Who am I?

● Thomas Cameron – Chief Architect @ Red Hat for
Western US

● In IT since 1993

● Written curriculum on Linux & Windows

● Been an IT admin in numerous Fortune 500 shops

● Held certs from Novell, Microsoft, TurboLinux, and Red
Hat

● Made some stupid, stupid mistakes in my career.
LFMF!

FOR PUBLIC RELEASE | THOMAS CAMERON6

Who are you?

FOR PUBLIC RELEASE | THOMAS CAMERON7

Who are you?

● New-ish sysadmin, or someone who is interested in
being one.

● My assumption is that you are a beginner.

● There are about a zillion ways to do this stuff, that's
one of the cool things (and curses) of this job

FOR PUBLIC RELEASE | THOMAS CAMERON8

What is patching?

FOR PUBLIC RELEASE | THOMAS CAMERON9

What is patching?

● Per Wikipedia:
● A patch is a piece of software designed to fix problems

with, or update a computer program or its supporting
data. This includes fixing security vulnerabilities and
other bugs, and improving the usability or performance.
Though meant to fix problems, poorly designed patches
can sometimes introduce new problems (see software
regressions). In some special cases updates may
knowingly break the functionality, for instance, by
removing components for which the update provider is
no longer licensed or disabling a device.

FOR PUBLIC RELEASE | THOMAS CAMERON10

What is patching?

● Per Wikipedia:
● Patch management is the process of using a strategy

and plan of what patches should be applied to which
systems at a specified time.

FOR PUBLIC RELEASE | THOMAS CAMERON11

Types of patches

FOR PUBLIC RELEASE | THOMAS CAMERON12

Types of patches

● In very general terms, we will generally need to apply
updates for three reasons:

● There's a bug in software functionality
● There's an enhancement to a software package
● There's a security flaw in a package

FOR PUBLIC RELEASE | THOMAS CAMERON13

How important are patches?

FOR PUBLIC RELEASE | THOMAS CAMERON14

How important are patches?

● This varies greatly. I work at Red Hat, and we generally
use MITRE Corporation's Common Vulnerabilities and
Exposures (CVE) information to determine the severity
of patches.

FOR PUBLIC RELEASE | THOMAS CAMERON15

FOR PUBLIC RELEASE | THOMAS CAMERON16

How important are patches?

● Critical impact: This rating is given to flaws that could
be easily exploited by a remote unauthenticated
attacker and lead to system compromise (arbitrary
code execution) without requiring user interaction.
These are the types of vulnerabilities that can be
exploited by worms. Flaws that require an
authenticated remote user, a local user, or an unlikely
configuration are not classed as Critical impact.

FOR PUBLIC RELEASE | THOMAS CAMERON17

How important are patches?

● Important impact: This rating is given to flaws that can
easily compromise the confidentiality, integrity, or
availability of resources. These are the types of
vulnerabilities that allow local users to gain privileges,
allow unauthenticated remote users to view resources
that should otherwise be protected by authentication,
allow authenticated remote users to execute arbitrary
code, or allow local or remote users to cause a denial
of service.

FOR PUBLIC RELEASE | THOMAS CAMERON18

How important are patches?

● Moderate impact: This rating is given to flaws that may
be more difficult to exploit but could still lead to some
compromise of the confidentiality, integrity, or
availability of resources, under certain circumstances.
These are the types of vulnerabilities that could have
had a Critical impact or Important impact but are less
easily exploited based on a technical evaluation of the
flaw, or affect unlikely configurations.

FOR PUBLIC RELEASE | THOMAS CAMERON19

How important are patches?

● Low impact: This rating is given to all other issues that
have a security impact. These are the types of
vulnerabilities that are believed to require unlikely
circumstances to be able to be exploited, or where a
successful exploit would give minimal consequences.

FOR PUBLIC RELEASE | THOMAS CAMERON20

From where do I get patches?

FOR PUBLIC RELEASE | THOMAS CAMERON21

From where do we get patches?

● This is highly dependent upon what you're running in
your environment:

● Are you using 100% vendor-supplied bits?
● Are you using a community-supported distro?
● Did you download and compile yourself?
● How about third-party repositories?

FOR PUBLIC RELEASE | THOMAS CAMERON22

How do I find out when
I need patches?

FOR PUBLIC RELEASE | THOMAS CAMERON23

How do I find out when I need patches?

● If you use one vendor's bits, contact the vendor. Most
have notification services.

FOR PUBLIC RELEASE | THOMAS CAMERON24

How do I find out when I need patches?

● If you use a community distro, find and subscribe to
their security mailing list.

● http://www.debian.org/security
● http://lists.centos.org/mailman/listinfo/centos-announce
● http://www.ubuntu.com/usn
● https://access.redhat.com/site/security/updates/advisory
● And so on

http://www.debian.org/security
http://lists.centos.org/mailman/listinfo/centos-announce
http://www.ubuntu.com/usn
https://access.redhat.com/site/security/updates/advisory

FOR PUBLIC RELEASE | THOMAS CAMERON25

How do I find out when I need patches?

● If you roll your own, it becomes a bit more complex.
Most F/OSS projects will have mailing lists. It's up to
you to follow them.

FOR PUBLIC RELEASE | THOMAS CAMERON26

How do I find out when I need patches?

● If you use third party repos, they should have a
mailing list as well.

FOR PUBLIC RELEASE | THOMAS CAMERON27

How do I find out when I need patches?

● You can also follow MITRE's CVE web site:
● http://cve.mitre.org/

● I also like the United States Computer Emergency
Readiness Team (US-CERT) web site

● http://www.us-cert.gov/ncas/current-activity/
● Security Focus Bugtraq

● http://www.securityfocus.com/

http://cve.mitre.org/
http://www.us-cert.gov/ncas/current-activity/
http://www.securityfocus.com/

FOR PUBLIC RELEASE | THOMAS CAMERON28

Think about patching
when you design!

FOR PUBLIC RELEASE | THOMAS CAMERON29

Think about patching when you design!

● Remember, if you choose an @everything installation,
you're going to have to update a TON of packages –
even if you're not using them

● I start my design with @core or @base (the extra
functionality of @core is, IMHO, worth the extra
packages to maintain)

● Then I figure out what the minimum package set
necessary for the workload. Web server? httpd. Not
necessarily @web-server since that might bring in e.g.
php, which you might not need and may even bring in
additional vulnerabilities!

FOR PUBLIC RELEASE | THOMAS CAMERON30

What should we patch?
What should we not patch?

FOR PUBLIC RELEASE | THOMAS CAMERON31

What should we patch? What should we not
patch?

FOR PUBLIC RELEASE | THOMAS CAMERON32

What should we patch? What should we not
patch?

● Patching should not be an automatic thing!

● Analyze the patches available. Do they apply generally
(every kernel), or to a specific configuration (only with
ipv6 and a specific configuration)?

● Does the criticality of the CVE or update really match
the criticality of your environment?

FOR PUBLIC RELEASE | THOMAS CAMERON33

What should we patch? What should we not
patch?

● I have been in organizations which have turned on
automatic updates.

FOR PUBLIC RELEASE | THOMAS CAMERON34

What should we patch? What should we not
patch?

● I have been in organizations which have turned on
automatic updates.

● In production.

FOR PUBLIC RELEASE | THOMAS CAMERON35

What should we patch? What should we not
patch?

● Wanna guess what the Wednesday was like after the
first Patch Tuesday?

FOR PUBLIC RELEASE | THOMAS CAMERON36

What should we patch? What should we not
patch?

FOR PUBLIC RELEASE | THOMAS CAMERON37

What should we patch? What should we not
patch?

● I did an analysis of Red Hat patches for a customer
back in November because they complained that they
were rebooting their 15,000 servers “all the time”
because of security updates.

● For the previous year, I found that there was exactly
one kernel update that actually applied to them based
on their production environment configuration.

● And the risk was effectively mitigated by border security.

FOR PUBLIC RELEASE | THOMAS CAMERON38

What should we patch? What should we not
patch?

● I did an analysis of Red Hat patches for a customer
back in November because they complained that they
were rebooting their 15,000 servers “all the time”
because of security updates.

● However, I also found a handful of performance updates
which could have increased their productivity.

FOR PUBLIC RELEASE | THOMAS CAMERON39

What should we patch? What should we not
patch?

● Consider the workload running on the servers. Rank
your servers.

● High criticality - outage affects all or a significant
portions of the business, 24x7 operation, etc.

● Medium criticality - departmental or divisional, sporadic
workloads, etc.

● Low criticality – edge servers, servers with distributed
workloads, etc.

FOR PUBLIC RELEASE | THOMAS CAMERON40

What should we patch? What should we not
patch?

● Consider the workload running on the servers. Rank
your your applications in complexity and sensitivity to
change.

● Static web site vs. clustered enterprise DB

FOR PUBLIC RELEASE | THOMAS CAMERON41

What should we patch? What should we not
patch?

● Consider the political risk of taking an outage
● It sucks to have to think about this, but this is a

significant reality.
● Who is the business unit owner? Are they IT friendly or

not?
● How about the application owners? Do the DBAs think

they should have root, and will they throw you under the
bus to prove their point?

FOR PUBLIC RELEASE | THOMAS CAMERON42

What should we patch? What should we not
patch?

● Remember that patching does not necessarily mean
rebooting!

● When to reboot
● kernel, glibc updates
● Complex updates of multiple services
● When needs-restarting(1) says you need to

● When to restart services
● Pretty much every other time

FOR PUBLIC RELEASE | THOMAS CAMERON43

Buy vs. build
patching systems

FOR PUBLIC RELEASE | THOMAS CAMERON44

Buy vs. build patching systems

● There are a number of really good F/OSS patching
systems out there.

● Spacewalk
● Katello
● mrepo
● reposync + createrepo
● ... and the list goes on and on

FOR PUBLIC RELEASE | THOMAS CAMERON45

Buy vs. build patching systems

● Pros of F/OSS patching systems:
● They're free!
● They're flexible!
● You'll learn a LOT!

FOR PUBLIC RELEASE | THOMAS CAMERON46

Buy vs. build patching systems

● Cons of F/OSS patching systems:
● They're free (like a puppy)!
● No SLA for bugfixes
● No SLA for trouble reports
● Licensing/redistribution concerns
● They're usually snowflakes

FOR PUBLIC RELEASE | THOMAS CAMERON47

Buy vs. build patching systems

● Pros of commercially supported patching systems
● Commercial support
● SLAs
● Often times do more than just package updates

● Config management
● Monitoring
● Workflow/life cycle management

FOR PUBLIC RELEASE | THOMAS CAMERON48

Buy vs. build patching systems

● Cons of commercially supported patching systems
● Commercial support
● They cost money - sometimes a LOT of money
● Many times they're opaque
● One size fits none

● “We do all platforms - badly!”

● Third party repository support is often sketchy
● Licensing/redistribution concerns

FOR PUBLIC RELEASE | THOMAS CAMERON49

Patch promotion

FOR PUBLIC RELEASE | THOMAS CAMERON50

Patch promotion

● I strongly recommend that you develop a patching plan
which involves multi-step patch promotion

● From vendor to development
● Subscribe dev systems to the development channel and test

● From development to QA
● Subscribe QA systems to the QA channel and test

● From QA to production
● Subscribe prod systems to the prod channel and deploy

FOR PUBLIC RELEASE | THOMAS CAMERON51

Patch promotion

● Have a backout plan!
● For Red Hat based systems, it can be as simple as

● yum downgrade [foo]

● For Debian based systems
● apt-get -t=<target release> install <package-name>

● It might be as extreme as reinstalling the system to the
previous installation version

FOR PUBLIC RELEASE | THOMAS CAMERON52

Patching cycles

FOR PUBLIC RELEASE | THOMAS CAMERON53

Patching cycles

● Determine what makes sense in your environment
● It will not be the same from company to company!

● Retail environments may have a freeze from the week before
Thanksgiving through December 26th or January 1st.

● Financial services may freeze around tax time
● Third party app releases may interfere with OS patching, and

vice versa

FOR PUBLIC RELEASE | THOMAS CAMERON54

Collaboration
Charlie Yankee Alpha

FOR PUBLIC RELEASE | THOMAS CAMERON55

Collaboration (Charlie Yankee Alpha)

● When you are developing your patch promotion
process and your patching cycles, adopt and Open
Source methodology!

● Be inclusive
● Bring in all the stakeholders early and often

● Be collaborative
● Solicit feedback - and take it to heart

● Get buy-in
● Involve the stakeholders in testing - get their sign-off

FOR PUBLIC RELEASE | THOMAS CAMERON56

Collaboration (Charlie Yankee Alpha)

● There's also a “Charlie Yankee Alpha (CYA)” factor
● When you include the stakeholders... especially when

they sign off on changes, you're not as likely to be
hammered when - not if - things go wrong

FOR PUBLIC RELEASE | THOMAS CAMERON57

The future of patching

FOR PUBLIC RELEASE | THOMAS CAMERON58

The future of patching

● As we move towards DevOps and other Buzzword 2.0
compliant technologies, patching will change

FOR PUBLIC RELEASE | THOMAS CAMERON59

The future of patching

● I've given up on the crystal ball, but here are some
things that seem to be trending:

● DevOps means more, smaller changes, with more
collaboration, more rapidly. This is generally a Good
ThingTM

● Huge, disruptive changes are becoming less desirable,
and being proven to be unnecessary.

● This does NOT obviate the necessity of dev --> QA --> prod
cycles, it just makes it easier.

● If you get a chance, read The Phoenix Project. It's a
great novel which is an intro to DevOps and how it can
be adopted.

FOR PUBLIC RELEASE | THOMAS CAMERON60

Questions?

FOR PUBLIC RELEASE | THOMAS CAMERON61

Thank you!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61

