

Best practices in
development and deployment,

with Docker and Containers

February 2014—Docker 0.8.1

@jpetazzo

●Wrote dotCloud PAAS deployment tools
–EC2, LXC, Puppet, Python, Shell, ØMQ...

●Docker contributor
–Docker-in-Docker, VPN-in-Docker,
router-in-Docker... CONTAINERIZE ALL THE THINGS!

●Runs Docker in production
–You shouldn't do it, but here's how anyway!

Outline

● Why should I care?
● The container metaphor
● Very quick demo
● Working with Docker
● Building images
● Docker future

Outline

● Why should I care?
● The container metaphor
● Very quick demo
● Working with Docker
● Building images
● Docker future

Deploy everything

● webapps
● backends
● SQL, NoSQL
● big data
● message queues
● … and more

Deploy almost everywhere

Deploy almost everywhere

YUP

Deploy almost everywhere

SOONYUP

Deploy almost everywhere

SOON SOONYUP

Deploy almost everywhere

SOON SOONYUP

Deploy almost everywhere

SOON SOON CLIYUP

Deploy almost everywhere

SOON SOON CLIYUP

Deploy almost everywhere

SOON SOON CLI Yeah,
right...YUP

Deploy almost everywhere

SOON SOON CLIYUP

Deploy almost everywhere

● Linux servers
● VMs or bare metal
● Any distro
● Kernel 3.8 (or RHEL 2.6.32)

Deploy reliably & consistently

Deploy reliably & consistently

● If it works locally, it will work on the server
● With exactly the same behavior
● Regardless of versions
● Regardless of distros
● Regardless of dependencies

Deploy efficiently

● Containers are lightweight
– Typical laptop runs 10-100 containers easily

– Typical server can run 100-1000 containers

● Containers can run at native speeds
– Lies, damn lies, and other benchmarks:

http://qiita.com/syoyo/items/bea48de8d7c6d8c73435

The performance!
It's over 9000!

Outline

● Why should I care?
● The container metaphor
● Very quick demo
● Working with Docker
● Building images
● Docker future

… Container ?

High level approach:
it's a lightweight VM

● own process space
● own network interface
● can run stuff as root
● can have its own /sbin/init

(different from the host)

« Machine Container »

Low level approach:
it's chroot on steroids

● can also not have its own /sbin/init
● container = isolated process(es)
● share kernel with host
● no device emulation (neither HVM nor PV)

« Application Container »

How does it work?
Isolation with namespaces

● pid
● mnt
● net
● uts
● ipc
● user

pid namespace

jpetazzo@tarrasque:~$ ps aux | wc -l
212

jpetazzo@tarrasque:~$ sudo docker run -t -i ubuntu bash
root@ea319b8ac416:/# ps aux
USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
root 1 0.0 0.0 18044 1956 ? S 02:54 0:00 bash
root 16 0.0 0.0 15276 1136 ? R+ 02:55 0:00 ps aux

(That's 2 processes)

mnt namespace

jpetazzo@tarrasque:~$ wc -l
/proc/mounts

32 /proc/mounts

root@ea319b8ac416:/# wc -l /proc/mounts

10 /proc/mounts

net namespace

root@ea319b8ac416:/# ip addr

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
 inet 127.0.0.1/8 scope host lo
 valid_lft forever preferred_lft forever
 inet6 ::1/128 scope host
 valid_lft forever preferred_lft forever

22: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc
pfifo_fast state UP qlen 1000
 link/ether 2a:d1:4b:7e:bf:b5 brd ff:ff:ff:ff:ff:ff
 inet 10.1.1.3/24 brd 10.1.1.255 scope global eth0
 valid_lft forever preferred_lft forever
 inet6 fe80::28d1:4bff:fe7e:bfb5/64 scope link
 valid_lft forever preferred_lft forever

uts namespace

jpetazzo@tarrasque:~$ hostname
tarrasque

root@ea319b8ac416:/# hostname
ea319b8ac416

ipc namespace

jpetazzo@tarrasque:~$ ipcs
------ Shared Memory Segments --------
key shmid owner perms bytes nattch status
0x00000000 3178496 jpetazzo 600 393216 2 dest
0x00000000 557057 jpetazzo 777 2778672 0
0x00000000 3211266 jpetazzo 600 393216 2 dest

root@ea319b8ac416:/# ipcs
------ Shared Memory Segments --------
key shmid owner perms bytes nattch status
------ Semaphore Arrays --------
key semid owner perms nsems
------ Message Queues --------
key msqid owner perms used-bytes messages

user namespace

● No demo, but see LXC 1.0 (just released)
● UID 0→1999 in container C1 is mapped to

UID 10000→11999 in host;
UID 0→1999 in container C2 is mapped to
UID 12000→13999 in host; etc.

● what will happen with copy-on-write?
– double translation at VFS?

– single root UID on read-only FS?

How does it work?
Isolation with cgroups

● memory
● cpu
● blkio
● devices

memory cgroup

● keeps track pages used by each group:
– file (read/write/mmap from block devices; swap)

– anonymous (stack, heap, anonymous mmap)

– active (recently accessed)

– inactive (candidate for eviction)

● each page is « charged » to a group
● pages can be shared (e.g. if you use any COW FS)

● Individual (per-cgroup) limits and out-of-memory killer

cpu and cpuset cgroups

● keep track of user/system CPU time
● set relative weight per group
● pin groups to specific CPU(s)

– Can be used to « reserve » CPUs for some apps

– This is also relevant for big NUMA systems

blkio cgroups

● keep track IOs for each block device
– read vs write; sync vs async

● set relative weights
● set throttle (limits) for each block device

– read vs write; bytes/sec vs operations/sec

Note: earlier versions (<3.8) didn't account async correctly.
 3.8 is better, but use 3.10 for best results.

devices cgroups

● controls read/write/mknod permissions
● typically:

– allow: /dev/{tty,zero,random,null}...

– deny: everything else

– maybe: /dev/net/tun, /dev/fuse, /dev/kvm, /dev/dri...

● fine-grained control for GPU, virtualization, etc.

How does it work?
Copy-on-write storage

● Create a new machine instantly
(Instead of copying its whole filesystem)

● Storage keeps track of what has changed
● Since 0.7, Docker has a storage plugin system

Storage:
many options!

Union
Filesystems

Snapshotting
Filesystems

Copy-on-write
block devices

Provisioning Superfast
Supercheap

Fast
Cheap

Fast
Cheap

Changing
small files

Superfast
Supercheap

Fast
Cheap

Fast
Costly

Changing
large files

Slow (first time)
Inefficient (copy-up!)

Fast
Cheap

Fast
Cheap

Diffing Superfast Superfast Slow

Memory usage Efficient Efficient Inefficient
(at high densities)

Drawbacks Random quirks
AUFS not mainline
!AUFS more quirks

ZFS not mainline
BTRFS not as nice

Higher disk usage
Great performance
(except diffing)

Bottom line Ideal for PAAS and
high density things

This is the Future
(probably)

Dodge Ram 3500

Compute efficiency:
almost no overhead

● processes are isolated,
but run straight on the host

● CPU performance
= native performance

● memory performance
= a few % shaved off for (optional) accounting

● network performance
= small overhead; can be reduced to zero

Alright, I get this.
Containers = nimble VMs.

The container metaphor

Problem: shipping goods

? ? ? ? ? ?

? ? ? ? ? ?

? ? ? ? ? ?

? ? ? ? ? ?

? ? ? ? ? ?

? ? ? ? ? ?

Solution:
the intermodal shipping container

Solved!

Problem: shipping code

? ? ? ? ? ?

? ? ? ? ? ?

? ? ? ? ? ?

? ? ? ? ? ?

? ? ? ? ? ?

? ? ? ? ? ?

Solution:
the Linux container

Solved!

Separation of concerns:
Dave the Developer

● inside my container:
– my code

– my libraries

– my package manager

– my app

– my data

Separation of concerns:
Oscar the Ops guy

● outside the container:
– logging

– remote access

– network configuration

– monitoring

Separation of concerns:
what it doesn't mean

« I don't have to care »
≠

« I don't care »

Outline

● Why should I care?
● The container metaphor
● Very quick demo
● Working with Docker
● Building images
● Docker future

Yes, but...

● « I don't need Docker;
I can do all that stuff with LXC tools, rsync,
and some scripts! »

● correct on all accounts;
but it's also true for apt, dpkg, rpm, yum, etc.

● the whole point is to commoditize,
i.e. make it ridiculously easy to use

What this really means…

● instead of writing « very small shell scripts » to
manage containers, write them to do the rest:
– continuous deployment/integration/testing

– orchestration

● = use Docker as a building block
● re-use other people images (yay ecosystem!)

Docker-what?
The Big Picture

● Open Source engine to commoditize LXC
● using copy-on-write for quick provisioning
● allowing to create and share images
● standard format for containers

(stack of layers; 1 layer = tarball+metadata)
● standard, reproducible way to easily build

trusted images (Dockerfile, Stackbrew...)

Docker-what?
History

● rewrite of dotCloud internal container engine
– original version: Python, tied to dotCloud PaaS

– released version: Go, legacy-free

● remember SCALE11X talk about LXC?
– Docker was announced one month later!

Docker-what?
Under the hood

● the Docker daemon runs in the background
– manages containers, images, and builds

– HTTP API (over UNIX or TCP socket)

– embedded CLI talking to the API

Docker-what?
Take me to your dealer

● Open Source
– GitHub public repository + issue tracking

https://github.com/dotcloud/docker

● Nothing up the sleeve
– public mailing lists (docker-user, docker-dev)

– IRC channels (Freenode: #docker #docker-dev)

– public decision process

Docker-what?
The ecosystem

● Docker Inc. (formerly dotCloud Inc.)
– ~30 employees, VC-backed

– SAAS and support offering around Docker

● Docker, the community
– more than 300 contributors, 1500 forks on GitHub

– dozens of projects around/on top of Docker

– x100k trained developers

Outline

● Why should I care?
● The container metaphor
● Very quick demo
● Working with Docker
● Building images
● Docker future

https://github.com/dotcloud/docker

One-time setup

● On your servers (Linux)
– Packages (Ubuntu, Debian, Fedora, Gentoo, Arch...)

– Single binary install (Golang FTW!)

– Easy provisioning on Rackspace, Digital Ocean, EC2, GCE...

● On your dev env (Linux, OS X, Windows)
– Vagrantfile

– boot2docker (25 MB VM image)

– Natively (if you run Linux)

The Docker workflow 1/2

● Work in dev environment
(local machine or container)

● Other services (databases etc.) in containers
(and behave just like the real thing!)

● Whenever you want to test « for real »:
– Build in seconds

– Run instantly

The Docker workflow 2/2

Satisfied with your local build?
● Push it to a registry (public or private)
● Run it (automatically!) in CI/CD
● Run it in production
● Happiness!

Something goes wrong? Rollback painlessly!

Outline

● Why should I care?
● The container metaphor
● Very quick demo
● Working with Docker
● Building images
● Docker future

Authoring images
with run/commit

1) docker run ubuntu bash

2) apt-get install this and that

3) docker commit <containerid> <imagename>

4) docker run <imagename> bash

5) git clone git://.../mycode

6) pip install -r requirements.txt

7) docker commit <containerid> <imagename>

8) repeat steps 4-7 as necessary

9) docker tag <imagename> <user/image>

10) docker push <user/image>

Authoring images
with run/commit

● Pros
– Convenient, nothing to learn

– Can roll back/forward if needed

● Cons
– Manual process

– Iterative changes stack up

– Full rebuilds are boring, error-prone

Authoring images
with a Dockerfile

FROM ubuntu

RUN apt-get -y update
RUN apt-get install -y g++
RUN apt-get install -y erlang-dev erlang-manpages erlang-base-hipe ...
RUN apt-get install -y libmozjs185-dev libicu-dev libtool ...
RUN apt-get install -y make wget

RUN wget http://.../apache-couchdb-1.3.1.tar.gz | tar -C /tmp -zxf-
RUN cd /tmp/apache-couchdb-* && ./configure && make install

RUN printf "[httpd]\nport = 8101\nbind_address = 0.0.0.0" >
 /usr/local/etc/couchdb/local.d/docker.ini

EXPOSE 8101
CMD ["/usr/local/bin/couchdb"]

 docker build -t jpetazzo/couchdb .

Authoring images
with a Dockerfile

● Minimal learning curve
● Rebuilds are easy
● Caching system makes rebuilds faster
● Single file to define the whole environment!

Do you even
Chef?

Puppet?
Ansible?

Salt?

Docker and Puppet

Docker and Puppet

● Get a Delorean
● Warm up flux capacitors
● Time-travel to yesterday
● Check Brandon Burton's lightning talk
● Check my talk

— Or —
● Get the slides, ask questions ☺

Outline

● Why should I care?
● The container metaphor
● Very quick demo
● Working with Docker
● Building images
● Docker future

Coming Soon

● Network acceleration
● Container-specific metrics
● Consolidated logging
● Plugins (compute backends...)
● Orchestration hooks

Those things are already possible,
but will soon be part of the core.

Docker 1.0

● Multi-arch, multi-OS
● Stable control API
● Stable plugin API
● Resiliency
● Signature
● Clustering

Recap

Docker:
● Is easy to install
● Will run anything, anywhere
● Gives you repeatable builds
● Enables better CI/CD workflows
● Is backed by a strong community
● Will change how we build and ship software

Thank you! Questions?

http://docker.io/

http://docker.com/

@docker

@jpetazzo

