

Securing Your Cloud With the
Xen Hypervisor

Russell Pavlicek
Xen Project Evangelist

Citrix Systems

Who is the Old, Fat Geek Up Front?

● Xen Project Evangelist (I have a big mouth...)

● Employed by Citrix, focused entirely on Xen project

● History with open source begins in 1995

● Former columnist for Infoworld, Processor
magazines

● Former panelist on The Linux Show, speaker at over
50 Open Source conferences

● Over 150 pieces published, one book on
open source, plus blogs

Presentation Goals

● Introduce the subject of security in the Cloud

● Introduce you to the Xen Project Security Tools

● Discuss some key Xen Project security features

● Get you started in the right direction toward securing
your Xen Project Hypervisor installation

Presentation Outline

● A few thoughts on the problem of securing the Cloud

● Overview of the Xen Project architecture

● Brief introduction to the principles of security analysis

● Examine some of the attack surfaces and the Xen
Project features we can use to mitigate them:

– Driver Domains

– PVgrub

– Stub Domains

– Paravirtualization (PV) versus
Hardware Virtualization (HVM)

– FLASK example policy

Introduction: Xen Project, The Cloud,
and Security

Introduction: Xen Project and Security

● Xen Project produces an enterprise-grade Type 1
hypervisor

● Built for the cloud before it was called cloud

● A number of advanced security features

– Driver domains, stub domains, FLASK, and more

– Most of them are not (or cannot) be turned on by
default

– Although they can be simple to use, sometimes
they appear complicated

The Cloud Security Conundrum

● Cloud Security: The 800lb Gorilla in the room

– Nothing generates more fear in specific, and FUD in
general

– Probably the single greatest barrier to Cloud adoption

● Immediately behind it is the inability to get out of the
20th century IT mindset

– Must get past the “Change is Bad” concept of 1980
– Cloud is about embracing change at a rapid pace

– The good news: the “Gorilla” is actually a “Red Herring”

● We don't need to fear it – we just need to solve it

Cloud Security: New Visibility to an Old Problem

● Security has always been an IT issue

● Putting a truly secure system in the open does not
reduce its security, it just increases the frequency of
attack

● Unfortunately, system security behind the firewall has
not always been comprehensive

● Having solutions in an external cloud forces us to
solve the security issues we should have already
solved

News Flash: Security Through Obscurity is Dead

Use Security by Design, Not by Wishful Thinking

● Security by wishful thinking no longer works

– Merely hoping that your firewall holds off the marauding hordes
is NOT good enough

– Addressing security in one area while ignoring others is NOT
good enough

– Saying, “We never had a problem before” is NOT good enough

● Comprehensive security starts with design

– It needs to be planned carefully and thought through

– It needs to be implemented at multiple levels

– It needs components which are themselves securable

Xen Project: Security by Design

● Xen Project was designed for clouds before the term
“cloud” was ever coined in the industry

– Designers foresaw the day of “infrastructure for
wide-area distributed computing” which we now call
“the cloud”

– http://www.cl.cam.ac.uk/research//srg/netos/xeno/publ
ications.html

● Xen Project is designed to thwart attacks from many
attack vectors, using different defensive techniques

http://www.cl.cam.ac.uk/research//srg/netos/xeno/publications.html
http://www.cl.cam.ac.uk/research//srg/netos/xeno/publications.html

Basic Architecture of the Xen Project
Hypervisor

Hypervisor Architectures

Type 1: Bare metal Hypervisor
A pure Hypervisor that runs directly on the
hardware and hosts Guest OS’s.

Provides partition isolation +
reliability, higher security

Provides partition isolation +
reliability, higher security

Host HWHost HW
Memory CPUsI/O

HypervisorHypervisor SchedulerScheduler

MMUMMU
Device Drivers/

Models
Device Drivers/

Models

VMn
VMn

VM1VM1

VM0VM0

Guest OS
and Apps
Guest OS
and Apps

Hypervisor Architectures

Type 1: Bare metal Hypervisor
A pure Hypervisor that runs directly on the
hardware and hosts Guest OS’s.

Type 2: OS ‘Hosted’
A Hypervisor that runs within a Host OS and
hosts Guest OS’s inside of it, using the host OS
services to provide the virtual environment.

Provides partition isolation +
reliability, higher security

Provides partition isolation +
reliability, higher security

Low cost, no additional drivers
Ease of use and installation

Low cost, no additional drivers
Ease of use and installation

Host HWHost HW
Memory CPUsI/O

Host HWHost HW
Memory CPUsI/O

HypervisorHypervisor SchedulerScheduler

MMUMMU
Device Drivers/

Models
Device Drivers/

Models

VMn
VMn

VM1
VM1

VM0
VM0

Guest OS
and Apps
Guest OS
and Apps

Host OSHost OS

Device DriversDevice Drivers
Ring-0 VM Monitor
“Kernel “
Ring-0 VM Monitor
“Kernel “

VMn
VMn

VM1
VM1

VM0
VM0

Guest OS
and Apps
Guest OS
and Apps

User
Apps
User
Apps

User-level VMMUser-level VMM

Device ModelsDevice Models

Xen Project: Type 1 with a Twist

Type 1: Bare metal Hypervisor

VMn
VMn

VM1VM1

VM0VM0

Guest OS
and Apps
Guest OS
and Apps

Host HWHost HW
Memory CPUsI/O

HypervisorHypervisor SchedulerScheduler

MMUMMU
Device Drivers/

Models
Device Drivers/

Models

Xen Project: Type 1 with a Twist

VMn
VMn

VM1VM1

VM0VM0

Guest OS
and Apps
Guest OS
and Apps

Host HWHost HW
Memory CPUsI/O

HypervisorHypervisor SchedulerScheduler

MMUMMU
Device Drivers/

Models
Device Drivers/

Models

Type 1: Bare metal Hypervisor

VMn
VMn

VM1VM1

VM0VM0

Guest OS
and Apps
Guest OS
and Apps

Host HWHost HW
Memory CPUsI/O

SchedulerScheduler MMUMMU

XEN Architecture

Xen Project: Type 1 with a Twist

VMn
VMn

VM1VM1

VM0VM0

Guest OS
and Apps
Guest OS
and Apps

Host HWHost HW
Memory CPUsI/O

HypervisorHypervisor SchedulerScheduler

MMUMMU
Device Drivers/

Models
Device Drivers/

Models

Type 1: Bare metal Hypervisor

VMn
VMn

VM1VM1

VM0VM0

Guest OS
and Apps
Guest OS
and Apps

Host HWHost HW
Memory CPUsI/O

SchedulerScheduler MMUMMU

XEN Architecture

Control domain
(dom0)
Control domain
(dom0)

DriversDrivers

Device ModelsDevice Models

Linux & BSDLinux & BSD

Xen Project Architecture: Basic Parts

Security Thinking: An Approach

An Approach to Security Thinking

● Threat models:

– Attacker can access network

– Attacker controls one Guest VM

● Security considerations to evaluate:

– How much code is accessible?

– What is the interface like? (e.g., pointers vs scalars)

– Defense-in-depth: how many rings of defense surround you?

● Then combine security tactics to secure the installation

– There is no single "magic bullet"

– Individual tactics reduce danger; combined tactics go farther

Example System For This
Discussion

● Hardware setup

– Two networks: one Control network, one Guest network

– IOMMU with interrupt remapping (AMD or Intel VT-d v2) to
allow for full hardware virtualization (HVM)

● Default configuration

– Network drivers in the Control Domain (aka "Domain 0" or just
"Dom0")

– Paravirtualized (PV) guests using PyGrub (grub-like boot utility
within context of Guest Domain)

– Hardware Virtualized (HVM) guests using Qemu (as the device
model) running in the Control Domain

Attacking the Network Interface

Attack Surface: Network Path

Attack Surface: Network Path

● Where might an exploit focus?

– Bugs in hardware driver

– Bugs in bridging / filtering

– Bugs in netback (via the ring protocol)

● Netback and Netfront are part of the Paravirtualization mode
● Note the exploits

– The main exploits exist already, even in hardware

– The netback surface is very small, but needs to be acknowledged

– When these are attacked in hardware, you have deep trouble

– You actually have better defense in the VM than in hardware

Result: Network Path Compromised

Result: Network Path Compromised

This could lead to the control of the whole system

Vulnerability Analysis:

What could a successful exploit yield?

Control of Domain 0 kernel

Security Feature: Driver Domains

Security Feature: Driver Domains

● What is a Driver Domain?

– Unprivileged VM which drives hardware

– It provides driver access to guest VMs

– Very limited scope; not a full operating system

– Does not have the access or capability of a full VM

Result: Driver Domain Compromised

Result: Driver Domain Compromised

● Now a successful exploit could yield:

– Control of the Driver Domain
(Paravirtualization hypercall interface)

● But the Driver Domain is limited: no shell, no utilities

– Control of that guest's network traffic

● But in the cloud, most orchestrators detect network traffic failure

● The problem is not allowed to stand very long

– Control of the network interface card (NIC)

– An opportunity to attack the netfront of other guest VMs

● But to take advantage of this platform, you need to launch another attack

● Compound attacks are complex, and they take time which you may not have

Basic How To: Driver Domains

● Create a VM with appropriate drivers

– Use any distribution suitable as a Control Domain

● Install the Xen Project hotplug scripts

– Just installing the Xen Project tools in the VM is usually
good enough

● Give the VM access to the physical NIC with PCI passthrough

● Configure the network topology in the Driver Domain

– Just like you would for the Control Domain

Basic How To: Driver Domains

● Configure the guest Virtual Network Interface (vif) to
use the new domain ID

– Add “backend=domnet” to vif declaration

vif = ['type=pv, bridge=xenbr0, backend=domnet']

Detailed Info

 http://wiki.xenproject.org/wiki/Driver_Domain

http://wiki.xenproject.org/wiki/Driver_Domain

Attacking the PyGrub Boot Loader

Attack Surface: PyGrub

Attack Surface: PyGrub

● What is PyGrub?

– “grub” implementation for Paravirtualized guests

– A Python program running in Control Domain

● What does it do?

– It reads the guest VM's filesystem

– It parses grub.conf

– It displays a boot menu to the user

– It passes the selected kernel image to domain builder

Attack Surface: PyGrub

Attack Surface: PyGrub

● Where might an exploit focus?

– Bugs in file system parser

– Bugs in menu parser

– Bugs in domain builder

● Again, note the exploits

– Forms of these exist in hardware as well

– But hardware doesn't have as many options to combat
the situation

Result: PyGrub Compromised

Result: PyGrub Compromised

This could lead to the control of the whole system

Vulnerability Analysis:

What could a successful exploit yield?

Control of Domain 0 user space

Security Feature: Fixed Kernels

Security Feature: Fixed Kernels

● What is a fixed kernel?

– Passing a known-good kernel from Control Domain

● No longer allows a user to choose the kernel

● Best practice for anything in production

– Removes attacker avenue to domain builder

● Disadvantages

– Host administrator must keep up with kernel updates

– Guest admin can't pass kernel parameters or custom kernels

Security Feature: PVgrub

Security Feature: PVgrub

● What is PVgrub?

– MiniOS plus the Paravirtualized port of “grub” running
in a guest context

– Paravirtualized equivalent of Hardware Virtualized
combination of BIOS plus grub

Result: PVgrub Compromised

Control Domain is no longer at risk

Vulnerability Analysis:

Now a successful exploit could yield:

Control of the attacked Guest Domain alone

Basic HowTo: PVgrub

● Make sure that you have the PVgrub image

– “pvgrub-$ARCH.gz”

– Normally lives in “/usr/lib/xen/boot”

– Debian, SLES: Currently need to build for yourself

– Included in Fedora Xen Project packages
● Use appropriate PVgrub as bootloader in guest

configuration:

– kernel="/usr/lib/xen/boot/pvgrub-x86_32.gz"

 See http://wiki.xenproject.org/wiki/Pvgrub

http://wiki.xenproject.org/wiki/Pvgrub

Attacking the Qemu Device Model

Attack Surface: Device Model (Qemu)

Attack Surface: Device Model (Qemu)

● What is Qemu?

– In other contexts, a virtualization provider

– In the Xen Project context, a provider of needed
device models

● Where might an exploit focus?

– Bugs in NIC emulator parsing packets

– Bugs in emulation of virtual devices

Result: Device Model Compromised

This could lead to the control of the whole system

Vulnerability Analysis:

What could a successful exploit yield?

Control Domain privileged user space

Security Feature: Qemu Stub Domains

● What is a stub domain?

– Stub domain: a small “service'' domain running just
one application

– Qemu stub domain: run each Qemu in its own
domain

Result: Stub Domain Compromised

You need to devise another attack entirely to do
anything more significant

Vulnerability Analysis:

Now a successful exploit could yield:

Control only of the stub domain VM
(which, if FLASK is employed, is a relatively small universe)

Basic HowTo: Qemu Stub Domains

● Make sure that you have the ioemu image:

– “ioemu-$ARCH.gz”

– Normally lives in “/usr/lib/xen/boot”

– SUSE SLES, currently need to build it yourself (SLES 12?)

– Included in Fedora Xen Project packages

– On Debian (and offshoots), you will need to build it yourself

● Specify stub domains in your guest configuration:

device_model_stubdomain_override = 1

 http://wiki.xenproject.org/wiki/Device_Model_Stub_Domains

Detailed Info

http://wiki.xenproject.org/wiki/Device_Model_Stub_Domains

Attacking the Hypervisor Itself

Attack Surface: The Hypervisor Itself

● Where might an exploit focus?

– On Paravirtualized (PV) Guests:
● PV Hypercalls

– On full Hardware Virtualized (HVM) Guests:
● HVM hypercalls (Subset of PV hypercalls)
● Instruction emulation (MMIO, shadow pagetables)
● Emulated platform devices: APIC, HPET, PIT
● Nested virtualization

● Security practice: Use PV VMs whenever possible

Using the Xen Project Security Module

Security Feature: FLASK Policy

● What is FLASK?

– Xen Security Module (XSM): Xen Project equivalent of
LSM

– FLASK: FLux Advanced Security Kernel

– Framework for XSM developed by NSA

– Xen Project equivalent of SELinux

– Uses same concepts and tools as SELinux

– Allows a policy to restrict hypercalls

Security Feature: FLASK Policy

● What can FLASK do?

– Basic: Restricts hypercalls to those needed by a particular
guest

– Advanced: Allows more fine-grained granting of privileges

● FLASK example policy

– This contains example roles for the Control Domain
(dom0), User/Guest Domain(domU), stub domains, driver
domains, etc.

– Make sure you TEST the example policy in your
environment BEFORE putting it into production!

NOTE: As an example policy, it is not as rigorously tested as other parts of Xen during
release; make sure it is suitable for you

Basic HowTo: FLASK Example Policy

● Build Xen Project software with XSM enabled

● Build the example policy

● Add the appropriate label to guest config files:

– “seclabel=[foo]”

– “stubdom_label=[foo]”

 http://wiki.xenproject.org/wiki/Xen_Security_Modules_:_XSM-FLASK

Detailed Info

http://wiki.xenproject.org/wiki/Xen_Security_Modules_:_XSM-FLASK

ARM-Specific Security Features

ARM SOCARM SOC

Xen Project + ARM = A Perfect Match

ARM Architecture Features for Virtualization ARM Architecture Features for Virtualization

Hypervisor mode : EL2

Kernel mode : EL1

User mode : EL0

GIC
v2

GIC
v2GTGT

2
stage
MMU

2
stage
MMU

I/O

Device Tree describes …

Hypercall Interface HVCHypercall Interface HVC

ARM SOCARM SOC ARM Architecture Features for Virtualization ARM Architecture Features for Virtualization

EL2

EL1

EL0

GIC
v2

GIC
v2GTGT

2
stage
MMU

2
stage
MMU

I/O

Device Tree describes …

HVCHVC

Xen Project + ARM = A Perfect Match

Xen Project HypervisorXen Project Hypervisor

ARM SOCARM SOC ARM Architecture Features for Virtualization ARM Architecture Features for Virtualization

EL2

EL1

EL0

GIC
v2

GIC
v2GTGT

2
stage
MMU

2
stage
MMU

I/O

Device Tree describes …

HVCHVC

Xen Project + ARM = A Perfect Match

Xen Project HypervisorXen Project Hypervisor

Any Xen Project Guest VM (including Dom0)Any Xen Project Guest VM (including Dom0)

KernelKernel

User SpaceUser Space

HVCHVC

ARM SOCARM SOC ARM Architecture Features for Virtualization ARM Architecture Features for Virtualization

EL2

EL1

EL0

GIC
v2

GIC
v2GTGT

2
stage
MMU

2
stage
MMU

I/O

Device Tree describes …

HVCHVC

Xen Project + ARM = A Perfect Match

Xen Project HypervisorXen Project Hypervisor

Dom0
only

Dom0
only

Any Xen Project Guest VM (including Dom0)Any Xen Project Guest VM (including Dom0)

KernelKernel

User SpaceUser Space

I/O

PV
back

PV
frontI/O

HVCHVC

ARM: Right Solution for Security

● Stays in ARM Hypervisor Mode

– The ARM architecture has separate Hypervisor and Kernel modes

– Because Xen Project's architecture maps so well to the ARM architecture, the
hypervisor never has to use Kernel mode

– Other hypervisors have to flip back and forth between modes

– If a hypervisor has to enter Kernel mode, it loses the security of running in a
privileged mode, isolated from the rest of the system

– This is a non-issue with the Xen Project Hypervisor on ARM

● Does not need to use device emulation

– No emulation means a smaller attack surface for bad guys

For More Information...

Thanks to George Dunlap for supplying much of the information
presented here, and Stefano Stabellini for ARM information

Center of the Xen Project universe:
http://www.XenProject.org/

Contact me at russell.pavlicek@xenproject.org

Detailed Info

 http://wiki.xenproject.org/wiki/Securing_Xen

Thank You!

mailto:russell.pavlicek@xenproject.org
http://wiki.xenproject.org/wiki/Securing_Xen

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide246
	Slide247
	Slide235
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide231
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65

