
What's New in OpenLDAP

Howard Chu
CTO, Symas Corp / Chief Architect OpenLDAP

SCALE12x

OpenLDAP Project

● Open source code project
● Founded 1998
● Three core team members
● A dozen or so contributors
● Feature releases every 12-18 months
● Maintenance releases roughly monthly

A Word About Symas

● Founded 1999
● Founders from Enterprise Software world

– platinum Technology (Locus Computing)

– IBM

● Howard joined OpenLDAP in 1999
– One of the Core Team members

– Appointed Chief Architect January 2007

● No debt, no VC investments

Intro
Howard Chu
● Founder and CTO Symas Corp.
● Developing Free/Open Source software since
1980s

– GNU compiler toolchain, e.g. "gmake -j", etc.

– Many other projects, check ohloh.net...

● Worked for NASA/JPL, wrote software for
Space Shuttle, etc.

4

What's New
● Lightning Memory-Mapped Database (LMDB)
and its knock-on effects
● Within OpenLDAP code
● Other projects

● New HyperDex clustered backend
● New Samba4/AD integration work
● Other features
● What's missing

LMDB
● Introduced at LDAPCon 2011

● Full ACID transactions
● MVCC, readers and writers don't block each other
● Ultra-compact, compiles to under 32KB
● Memory-mapped, lightning fast zero-copy reads
● Much greater CPU and memory efficiency
● Much simpler configuration

LMDB Impact

● Within OpenLDAP
● Revealed other frontend bottlenecks that were hidden

by BerkeleyDB-based backends
● Addressed in OpenLDAP 2.5

● Thread pool enhanced, support multiple work queues to
reduce mutex contention

● Connection manager enhanced, simplify write synchronization

OpenLDAP Frontend

● Testing in 2011 (16 core server):
● back-hdb, 62000 searches/sec, 1485 % CPU
● back-mdb, 75000 searches/sec, 1000 % CPU
● back-mdb, 2 slapds, 127000 searches/sec, 1250 %

CPU - network limited

● We should not have needed two processes to hit
this rate

Efficiency Note

● back-hdb 62000 searches/sec @ 1485 %
● 41.75 searches per CPU %

● back-mdb 127000 searches/sec @1250 %
● 101.60 searches per CPU %

● 2.433x as many searches per unit of CPU
● "Performance" isn't the point, *Efficiency* is what
matters

OpenLDAP Frontend
● Threadpool contention

● Analyzed using mutrace
● Found #1 bottleneck in threadpool mutex
● Modified threadpool to support multiple queues
● On quad-core laptop, using 4 queues reduced mutex

contended time by factor of 6.
● Reduced condition variable contention by factor of 3.
● Overall 20 % improvement in throughput on quad-core

VM

OpenLDAP Frontend
● Connection Manager

● Also a single thread, accepting new connections and
polling for read/write ready on existing

● Now can be split to multiple threads
● Impact depends on number of connections

● Polling for write is no longer handled by the listener thread
● Removes one level of locks and indirection
● Simplifies WriteTimeout implementation
● Typically no benchmark impact, only significant when blocking on

writes due to slow clients

OpenLDAP Frontend

OL 2.4 OL 2.5
0

5000

10000

15000

20000

25000

30000

35000

40000

Frontend Improvements, Quadcore VM

SearchRate

AuthRate

ModRate

O
ps

/S
ec

on
d

OpenLDAP Frontend

● Putting it into context, compared to :
– OpenLDAP 2.4 back-mdb and hdb

– OpenLDAP 2.4 back-mdb on Windows 2012 x64

– OpenDJ 2.4.6, 389DS, ApacheDS 2.0.0-M13

– Latest proprietary servers from CA, Microsoft,
Novell, and Oracle

OpenLDAP Frontend

OL mdb
OL hdb

OL mdb W64
OpenDJ

389DS
Other #1

Other #2
Other #3

Other #4
AD LDS 2012

ApacheDS

0

5000

10000

15000

20000

25000

30000

35000

LDAP Performance

Search Mixed Search Modify Mixed Mod

O
ps

/s
ec

on
d

OpenLDAP Frontend

OL mdb 2.5
OL mdb

OL hdb
OL mdb W64

OpenDJ
389DS

Other #1
Other #2

Other #3
Other #4

AD LDS 2012
ApacheDS

0

5000

10000

15000

20000

25000

30000

35000

40000

LDAP Performance

Search Mixed Search Modify Mixed Mod

O
ps

/s
ec

on
d

LMDB Impact
● Adoption by many other projects

● Outperforms all other embedded databases in
common applications
● CFengine, Postfix, PowerDNS, etc.

● Has none of the reliability/integrity weaknesses of
other databases

● Has none of the licensing issues...
● Integrated into multiple NoSQL projects

● Redis, SkyDB, Memcached, HyperDex, etc.

LMDB Microbenchmark

● Comparisons based on Google's LevelDB
● Also tested against Kyoto Cabinet's TreeDB,
SQLite3, and BerkeleyDB

● Tested using RAM filesystem (tmpfs), reiserfs on
SSD, and multiple filesystems on HDD

– btrfs, ext2, ext3, ext4, jfs, ntfs, reiserfs, xfs, zfs

– ext3, ext4, jfs, reiserfs, xfs also tested with external
journals

LMDB Microbenchmark

● Relative Footprint

● Clearly LMDB has the smallest footprint
– Carefully written C code beats C++ every time

text data bss dec hex filename

272247 1456 328 274031 42e6f db_bench

1675911 2288 304 1678503 199ca7 db_bench_bdb

90423 1508 304 92235 1684b db_bench_mdb

653480 7768 1688 662936 a2764 db_bench_sqlite3

296572 4808 1096 302476 49d8c db_bench_tree_db

LMDB Microbenchmark

Sequential
0

2000000

4000000

6000000

8000000

10000000

12000000

14000000

16000000

Read Performance

Small Records

SQLite3 TreeDB LevelDB BDB MDB

Random
0

100000

200000

300000

400000

500000

600000

700000

800000

Read Performance

Small Records

SQLite3 TreeDB LevelDB BDB MDB

LMDB Microbenchmark

Sequential
0

5000000

10000000

15000000

20000000

25000000

30000000

35000000

7402 16514 299133 9133

30303030

Read Performance

Large Records

SQLite3 TreeDB LevelDB BDB MDB

Random
0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

2000000

7047 14518 15183 8646

1718213

Read Performance

Large Records

SQLite3 TreeDB LevelDB BDB MDB

LMDB Microbenchmark

Sequential
1

10

100

1000

10000

100000

1000000

10000000

100000000

7402
16514

299133

9133

30303030

Read Performance

Large Records

SQLite3 TreeDB LevelDB BDB MDB

Random
1

10

100

1000

10000

100000

1000000

10000000

7047
14518 15183

8646

1718213

Read Performance

Large Records

SQLite3 TreeDB LevelDB BDB MDB

LMDB Microbenchmark

Sequential
0

2000

4000

6000

8000

10000

12000

14000

2029

5860

3366

1920

12905

Asynchronous Write Performance

Large Records, tmpfs

SQLite3 TreeDB LevelDB BDB MDB

Random
0

2000

4000

6000

8000

10000

12000

14000

2004

5709

742

1902

12735

Asynchronous Write Performance

Large Records, tmpfs

SQLite3 TreeDB LevelDB BDB MDB

LMDB Microbenchmark

Sequential
0

2000

4000

6000

8000

10000

12000

14000

2068

5860

3138

1952

13215

Batched Write Performance

Large Records, tmpfs

SQLite3 TreeDB LevelDB BDB MDB

Random
0

2000

4000

6000

8000

10000

12000

14000

2041

5709

3079

1939

13099

Batched Write Performance

Large Records, tmpfs

SQLite3 TreeDB LevelDB BDB MDB

LMDB Microbenchmark

Sequential
0

2000

4000

6000

8000

10000

12000

14000

2026

3121 3368

1913

12916

Synchronous Write Performance

Large Records, tmpfs

SQLite3 TreeDB LevelDB BDB MDB

Random
0

2000

4000

6000

8000

10000

12000

14000

1996 2162

745

1893

12665

Synchronous Write Performance

Large Records, tmpfs

SQLite3 TreeDB LevelDB BDB MDB

Memcached

BDB 5.3 LMDB Memcached InnoDB
0.01

0.1

1

10

100

1000

Read Performance

Single Thread, Log Scale

max

max99th

max95th

max90th

avg

minm
se

c

BDB 5.3 LMDB Memcached InnoDB
0.01

0.1

1

10

100

1000

Write Performance

Single Thread, Log Scale

max

max99th

max95th

max90th

avg

minm
se

c

Memcached

BDB 5.3 LMDB Memcached InnoDB
0.01

0.1

1

10

100

1000

10000

Read Performance

4 Threads, Log Scale

max

max99th

max95th

max90th

avg

minm
se

c

BDB 5.3 LMDB Memcached InnoDB
0.01

0.1

1

10

100

1000

Write Performance

4 Threads, Log Scale

max

max99th

max95th

max90th

avg

minm
se

c

HyperDex
● New generation NoSQL database server

● http://hyperdex.org
● Simple configuration/deployment
● Multidimensional indexing/sharding
● Efficient distributed search engine
● Built on Google LevelDB, evolved to their fixed

version HyperLevelDB
● Ported to LMDB

http://hyperdex.org/

LMDB, HyperDex

LMDB, HyperDex
● 40GB data size
● CPU time used for inserts :

● LMDB 19:44.52
● HyperLevelDB 96:46.96

● HyperLevelDB used 4.9x more CPU for same
number of operations

● Again, performance isn't the point. Throwing extra
CPU at a job to "make it go faster" is stupid.

LMDB, HyperDex

LMDB, HyperDex

● CPU time used for read/update :
– LMDB 1:33.17

– HyperLevelDB 3:37.67

● HyperLevelDB used 2.3x more CPU for same
number of operations

LMDB, HyperDex

LMDB, HyperDex
● 400GB data size
● CPU time used for inserts :

● LMDB 227:26
● HyperLevelDB 3373:13

● HyperLevelDB used 14.8x more CPU for same
number of operations

LMDB, HyperDex

LMDB, HyperDex

● CPU time used for read/update :
– LMDB 4:21.41

– HyperLevelDB 17:27

● HyperLevelDB used 4.0x more CPU for same
number of operations

back-hyperdex
● New clustered backend built on HyperDex

● Existing back-ndb clustered backend is deprecated, Oracle
has refused to cooperate on support

● Nearly complete LDAP support
● Currently has limited search filter support
● Uses flat (back-bdb style) namespace, not hierarchical
● Still in prototype stage as HyperDex API is still in flux

Samba4/AD

● Samba4 provides its own ActiveDirectory-compatible
LDAP service
● built on Samba ldb/tdb libraries
● supports AD replication

● Has some problems
● Incompatible with Samba3+OpenLDAP deployments
● Originally attempted to interoperate with OpenLDAP, but

that work was abandoned
● Poor performance

Samba4/AD

● OpenLDAP interop work revived
● two opposite approaches being pursued in parallel

● resurrect original interop code
● port functionality into slapd overlays

● currently about 75 % of the test suite passes
● keep an eye on contrib/slapd-modules/samba4

Other Features

● cn=config enhancements
● Support LDAPDelete op
● Support slapmodify/slapdelete offline tools

● LDAP transactions
● Needed for Samba4 support

● Frontend/overlay restructuring
● Rationalize Bind and ExtendedOp result handling
● Other internal API cleanup

What's Missing

● Deprecated BerkeleyDB-based backends
● back-bdb was deprecated in 2.4
● back-hdb deprecated in 2.5
● both scheduled for deletion in 2.6
● configure switches renamed, so existing packager

scripts can no longer enable them without explicit
action

Questions?

41

Thanks!

