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OpenLDAP Project

● Open source code project
● Founded 1998
● Three core team members
● A dozen or so contributors
● Feature releases every 12-18 months
● Maintenance releases roughly monthly



A Word About Symas

● Founded 1999
● Founders from Enterprise Software world

– platinum Technology (Locus Computing)

– IBM

● Howard joined OpenLDAP in 1999
– One of the Core Team members

– Appointed Chief Architect January 2007

● No debt, no VC investments



Intro
Howard Chu
● Founder and CTO Symas Corp.
● Developing Free/Open Source software since 
1980s

– GNU compiler toolchain, e.g. "gmake -j", etc.

– Many other projects, check ohloh.net...

● Worked for NASA/JPL, wrote software for 
Space Shuttle, etc.
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What's New
● Lightning Memory-Mapped Database (LMDB) 
and its knock-on effects
● Within OpenLDAP code
● Other projects

● New HyperDex clustered backend
● New Samba4/AD integration work
● Other features
● What's missing



LMDB
● Introduced at LDAPCon 2011

● Full ACID transactions
● MVCC, readers and writers don't block each other
● Ultra-compact, compiles to under 32KB
● Memory-mapped, lightning fast zero-copy reads
● Much greater CPU and memory efficiency
● Much simpler configuration



LMDB Impact

● Within OpenLDAP
● Revealed other frontend bottlenecks that were hidden 

by BerkeleyDB-based backends
● Addressed in OpenLDAP 2.5

● Thread pool enhanced, support multiple work queues to 
reduce mutex contention

● Connection manager enhanced, simplify write synchronization



OpenLDAP Frontend

● Testing in 2011 (16 core server):
● back-hdb, 62000 searches/sec, 1485 % CPU
● back-mdb, 75000 searches/sec, 1000 % CPU
● back-mdb, 2 slapds, 127000 searches/sec, 1250 % 

CPU - network limited

● We should not have needed two processes to hit 
this rate



Efficiency Note

● back-hdb 62000 searches/sec @ 1485 %
● 41.75 searches per CPU %

● back-mdb 127000 searches/sec @1250 %
● 101.60 searches per CPU %

● 2.433x as many searches per unit of CPU
● "Performance" isn't the point, *Efficiency* is what 
matters



OpenLDAP Frontend
● Threadpool contention

● Analyzed using mutrace
● Found #1 bottleneck in threadpool mutex
● Modified threadpool to support multiple queues
● On quad-core laptop, using 4 queues reduced mutex 

contended time by factor of 6.
● Reduced condition variable contention by factor of 3.
● Overall 20 % improvement in throughput on quad-core 

VM



OpenLDAP Frontend
● Connection Manager

● Also a single thread, accepting new connections and 
polling for read/write ready on existing

● Now can be split to multiple threads
● Impact depends on number of connections

● Polling for write is no longer handled by the listener thread
● Removes one level of locks and indirection
● Simplifies WriteTimeout implementation
● Typically no benchmark impact, only significant when blocking on 

writes due to slow clients



OpenLDAP Frontend
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OpenLDAP Frontend

● Putting it into context, compared to :
– OpenLDAP 2.4 back-mdb and hdb

– OpenLDAP 2.4 back-mdb on Windows 2012  x64

– OpenDJ 2.4.6, 389DS, ApacheDS 2.0.0-M13

– Latest proprietary servers from CA, Microsoft, 
Novell, and Oracle



OpenLDAP Frontend
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OpenLDAP Frontend
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LMDB Impact
● Adoption by many other projects

● Outperforms all other embedded databases in 
common applications
● CFengine, Postfix, PowerDNS, etc.

● Has none of the reliability/integrity weaknesses of 
other databases

● Has none of the licensing issues...
● Integrated into multiple NoSQL projects

● Redis, SkyDB, Memcached, HyperDex, etc.



LMDB Microbenchmark

● Comparisons based on Google's LevelDB
● Also tested against Kyoto Cabinet's TreeDB, 
SQLite3, and BerkeleyDB

● Tested using RAM filesystem (tmpfs), reiserfs on 
SSD, and multiple filesystems on HDD

– btrfs, ext2, ext3, ext4, jfs, ntfs, reiserfs, xfs, zfs

– ext3, ext4, jfs, reiserfs, xfs also tested with external 
journals



LMDB Microbenchmark

● Relative Footprint

● Clearly LMDB has the smallest footprint
– Carefully written C code beats C++ every time

text data bss dec hex filename

272247 1456 328 274031 42e6f db_bench

1675911 2288 304 1678503 199ca7 db_bench_bdb

90423 1508 304 92235 1684b db_bench_mdb

653480 7768 1688 662936 a2764 db_bench_sqlite3

296572 4808 1096 302476 49d8c db_bench_tree_db



LMDB Microbenchmark
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LMDB Microbenchmark
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LMDB Microbenchmark
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LMDB Microbenchmark
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LMDB Microbenchmark
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LMDB Microbenchmark
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Memcached
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Memcached
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HyperDex
● New generation NoSQL database server

● http://hyperdex.org
● Simple configuration/deployment
● Multidimensional indexing/sharding
● Efficient distributed search engine
● Built on Google LevelDB, evolved to their fixed 

version HyperLevelDB
● Ported to LMDB

http://hyperdex.org/


LMDB, HyperDex



LMDB, HyperDex
● 40GB data size
● CPU time used for inserts :

● LMDB 19:44.52
● HyperLevelDB 96:46.96

● HyperLevelDB used 4.9x more CPU for same 
number of operations

● Again, performance isn't the point. Throwing extra 
CPU at a job to "make it go faster" is stupid.



LMDB, HyperDex



LMDB, HyperDex

● CPU time used for read/update :
– LMDB 1:33.17

– HyperLevelDB 3:37.67

● HyperLevelDB used 2.3x more CPU for same 
number of operations



LMDB, HyperDex



LMDB, HyperDex
● 400GB data size
● CPU time used for inserts :

● LMDB 227:26
● HyperLevelDB 3373:13

● HyperLevelDB used 14.8x more CPU for same 
number of operations



LMDB, HyperDex



LMDB, HyperDex

● CPU time used for read/update :
– LMDB 4:21.41

– HyperLevelDB 17:27

● HyperLevelDB used 4.0x more CPU for same 
number of operations



back-hyperdex
● New clustered backend built on HyperDex

● Existing back-ndb clustered backend is deprecated, Oracle 
has refused to cooperate on support

● Nearly complete LDAP support
● Currently has limited search filter support
● Uses flat (back-bdb style) namespace, not hierarchical
● Still in prototype stage as HyperDex API is still in flux



Samba4/AD

● Samba4 provides its own ActiveDirectory-compatible 
LDAP service
● built on Samba ldb/tdb libraries
● supports AD replication

● Has some problems
● Incompatible with Samba3+OpenLDAP deployments
● Originally attempted to interoperate with OpenLDAP, but 

that work was abandoned
● Poor performance



Samba4/AD

● OpenLDAP interop work revived
● two opposite approaches being pursued in parallel

● resurrect original interop code
● port functionality into slapd overlays

● currently about 75 % of the test suite passes
● keep an eye on contrib/slapd-modules/samba4



Other Features

● cn=config enhancements
● Support LDAPDelete op
● Support slapmodify/slapdelete offline tools

● LDAP transactions
● Needed for Samba4 support

● Frontend/overlay restructuring
● Rationalize Bind and ExtendedOp result handling
● Other internal API cleanup



What's Missing

● Deprecated BerkeleyDB-based backends
● back-bdb was deprecated in 2.4
● back-hdb deprecated in 2.5
● both scheduled for deletion in 2.6
● configure switches renamed, so existing packager 

scripts can no longer enable them without explicit 
action



Questions?
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Thanks!


