
Rapid Upgrades With Pg_Upgrade

BRUCE MOMJIAN

February, 2013

Pg_Upgrade allows migration between major releases of Postgres
without a data dump/reload. This presentation explains how
pg_upgrade works.
Creative Commons Attribution License http://momjian.us/presentations

1 / 19



Traditional Postgres Upgrade Options

◮ pg_dump (logical dump)/restore

◮ Slony

Rapid Upgrades With Pg_Upgrade 2 / 19



Why Upgrading Postgres Is Complex

◮ New features often require system table changes

◮ However, the internal data format rarely changes

Rapid Upgrades With Pg_Upgrade 3 / 19



Why Pg_Upgrade

◮ Very fast upgrades

◮ Optionally no additional disk space

pg_upgrade installs new system tables while using data files from
the previous Postgres version.

Rapid Upgrades With Pg_Upgrade 4 / 19



How It Works: Initial Setup

1

2

3 6

5

4 7

8

9

pg_class

User Tables

15 21 27

262014

13 19 25

241812

17 2311

10 16 22

System Tables

clog

Old Cluster

1

2

3 6

5

4 7

8

9

pg_class

User Tables

System Tables

clog

New Cluster

Rapid Upgrades With Pg_Upgrade 5 / 19



Decouple New Clog Via Freezing

1

2

3 6

5

4 7

8

9

pg_class

User Tables

15 21 27

262014

13 19 25

241812

17 2311

10 16 22

System Tables

clog

Old Cluster

1

2

3 6

4 7

8

9

pg_class

User Tables

System Tables

clog

New Cluster

5Freeze

X X

Rapid Upgrades With Pg_Upgrade 6 / 19



Transfer Clog and XID

1

2

3 6

5

4 7

8

9

pg_class

User Tables

15 21 27

262014

13 19 25

241812

17 2311

10 16 22

System Tables

clog

Old Cluster

1

2

3 6

5

4 7

8

9

pg_class

User Tables

System Tables

clog

New Cluster

controldata controldataxid

Rapid Upgrades With Pg_Upgrade 7 / 19



Get Schema Dump

1

2

3 6

5

4 7

8

9

pg_class

User Tables

15 21 27

262014

13 19 25

241812

17 2311

10 16 22

System Tables

clog

Old Cluster

1

2

3 6

5

4 7

8

9

pg_class

User Tables

System Tables

clog

New Cluster

pg_dumpall - -schema

Rapid Upgrades With Pg_Upgrade 8 / 19



Restore Schema In New Cluster

1

2

3 6

5

4 7

8

9

pg_class

User Tables

15 21 27

262014

13 19 25

241812

17 2311

10 16 22

System Tables

clog

Old Cluster

1

2

3 6

5

4 7

8

9

pg_class

User Tables

26

System Tables

clog

New Cluster

pg_dumpall − −schema

17 23

24

25

27

18

10

11

12

13

14

15

16

19

20

21

22

Rapid Upgrades With Pg_Upgrade 9 / 19



Copy User Heap/Index Files

1

2

3 6

5

4 7

8

9

pg_class

User Tables

15 21 27

262014

13 19 25

241812

17 2311

10 16 22

System Tables

clog

Old Cluster

1

2

3 6

5

4 7

8

9

pg_class

User Tables

26

System Tables

clog

New Cluster

1610

11

13

12

14

15

19

20

21

22

23

24

25

27

18

17

Rapid Upgrades With Pg_Upgrade 10 / 19



Complete

1

2

3 6

5

4 7

8

9

pg_class

User Tables

15 21 27

262014

13 19 25

241812

17 2311

10 16 22

System Tables

clog

Old Cluster

1

2

3 6

5

4 7

8

9

pg_class

User Tables

26

System Tables

clog

New Cluster

24

25

27

10

11

12

13

14

15

16

17

18

19

20

21

22

23

Rapid Upgrades With Pg_Upgrade 11 / 19



How It Works: In Detail

◮ Check for cluster compatability

◮ locale
◮ encoding

◮ Use pg_dumpall to dump old cluster schema (no data)

◮ Freeze all new cluster rows (remove reference to clog entries)

◮ New cluster uses old xid counter value (see freeze above)

◮ Set system table frozen xids to match the current xid

◮ Create new users/databases

◮ Collect cluster information

◮ Install support functions that call internal backend functions

◮ Create schema in new cluster

◮ Copy or link files from old cluster to new cluster

◮ Warn about any remaining issues, like REINDEX
requirements

Rapid Upgrades With Pg_Upgrade 12 / 19



Sample Run: Performing Consistency Checks

Performing Consistency Checks
-----------------------------
Checking current, bin, and data directories ok
Checking cluster versions ok
Checking database user is a superuser ok
Checking for prepared transactions ok
Checking for reg* system OID user data types ok
Checking for invalid indexes from concurrent index builds ok
Checking for contrib/isn with bigint-passing mismatch ok
Creating catalog dump ok
Checking for presence of required libraries ok
Checking database user is a superuser ok

Checking for prepared transactions ok

If pg_upgrade fails after this point, you must re-initdb the
new cluster before continuing.

Rapid Upgrades With Pg_Upgrade 13 / 19



Sample Run: Performing Migration

Performing Upgrade
------------------
Analyzing all rows in the new cluster ok
Freezing all rows on the new cluster ok
Deleting files from new pg_clog ok
Copying old pg_clog to new server ok
Setting next transaction ID for new cluster ok
Resetting WAL archives ok
Setting frozenxid counters in new cluster ok
Creating databases in the new cluster ok
Adding support functions to new cluster ok
Restoring database schema to new cluster ok
Removing support functions from new cluster ok

Adding ".old" suffix to old global/pg_control ok

If you want to start the old cluster, you will need to remove
the ".old" suffix from /u/pgsql.old/data/global/pg_control.old.
Because "link" mode was used, the old cluster cannot be safely

started once the new cluster has been started.

Linking user relation files
ok

Setting next OID for new cluster ok
Creating script to analyze new cluster ok

Rapid Upgrades With Pg_Upgrade 14 / 19



Sample Run: Completion

Upgrade Complete
----------------
Optimizer statistics are not transferred by pg_upgrade so,
once you start the new server, consider running:

analyze_new_cluster.sh

Running this script will delete the old cluster’s data files:
delete_old_cluster.sh

Rapid Upgrades With Pg_Upgrade 15 / 19



Possible Data
Format Changes

Change Conversion Method

clog none

heap page header, including bitmask convert to new page format on read

tuple header, including bitmask convert to new page format on read

data value format create old data type in new cluster

index page format reindex, or recreate index methods

TOAST page format convert to new page format on read

Rapid Upgrades With Pg_Upgrade 16 / 19



Speed Comparison

Migration Method Minutes
dump/restore 300.0
dump with parallel restore 180.0
pg_upgrade in copy mode 44.0
pg_upgrade in link mode 0.7

Database size: 150GB, 850 tables

The last duration is 44 seconds.

Timings courtesy of

Stefan Kaltenbrunner

(mastermind on IRC)

Rapid Upgrades With Pg_Upgrade 17 / 19



Release History

◮ 9.0 focused on stability

◮ 9.1 focused on performance for databases with many
relations

◮ 9.2 focused on improved debugging and reliability for
non-standard configurations

◮ 9.3 will focus on performance via parallelism and reduced
fsync activity

Rapid Upgrades With Pg_Upgrade 18 / 19



Conclusion

http://momjian.us/presentations
Rapid Upgrades With Pg_Upgrade 19 / 19


