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Pg_Upgrade allows migration between major releases of Postgres
without a data dump/reload. This presentation explains how
pg_upgrade works.
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Traditional Postgres Upgrade Options

◮ pg_dump (logical dump)/restore

◮ Slony
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Why Upgrading Postgres Is Complex

◮ New features often require system table changes

◮ However, the internal data format rarely changes
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Why Pg_Upgrade

◮ Very fast upgrades

◮ Optionally no additional disk space

pg_upgrade installs new system tables while using data files from
the previous Postgres version.
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How It Works: Initial Setup
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Decouple New Clog Via Freezing
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Transfer Clog and XID
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Get Schema Dump
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Restore Schema In New Cluster
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Copy User Heap/Index Files
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Complete
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How It Works: In Detail

◮ Check for cluster compatability

◮ locale
◮ encoding

◮ Use pg_dumpall to dump old cluster schema (no data)

◮ Freeze all new cluster rows (remove reference to clog entries)

◮ New cluster uses old xid counter value (see freeze above)

◮ Set system table frozen xids to match the current xid

◮ Create new users/databases

◮ Collect cluster information

◮ Install support functions that call internal backend functions

◮ Create schema in new cluster

◮ Copy or link files from old cluster to new cluster

◮ Warn about any remaining issues, like REINDEX
requirements
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Sample Run: Performing Consistency Checks

Performing Consistency Checks
-----------------------------
Checking current, bin, and data directories ok
Checking cluster versions ok
Checking database user is a superuser ok
Checking for prepared transactions ok
Checking for reg* system OID user data types ok
Checking for invalid indexes from concurrent index builds ok
Checking for contrib/isn with bigint-passing mismatch ok
Creating catalog dump ok
Checking for presence of required libraries ok
Checking database user is a superuser ok

Checking for prepared transactions ok

If pg_upgrade fails after this point, you must re-initdb the
new cluster before continuing.
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Sample Run: Performing Migration

Performing Upgrade
------------------
Analyzing all rows in the new cluster ok
Freezing all rows on the new cluster ok
Deleting files from new pg_clog ok
Copying old pg_clog to new server ok
Setting next transaction ID for new cluster ok
Resetting WAL archives ok
Setting frozenxid counters in new cluster ok
Creating databases in the new cluster ok
Adding support functions to new cluster ok
Restoring database schema to new cluster ok
Removing support functions from new cluster ok

Adding ".old" suffix to old global/pg_control ok

If you want to start the old cluster, you will need to remove
the ".old" suffix from /u/pgsql.old/data/global/pg_control.old.
Because "link" mode was used, the old cluster cannot be safely

started once the new cluster has been started.

Linking user relation files
ok

Setting next OID for new cluster ok
Creating script to analyze new cluster ok
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Sample Run: Completion

Upgrade Complete
----------------
Optimizer statistics are not transferred by pg_upgrade so,
once you start the new server, consider running:

analyze_new_cluster.sh

Running this script will delete the old cluster’s data files:
delete_old_cluster.sh
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Possible Data
Format Changes

Change Conversion Method

clog none

heap page header, including bitmask convert to new page format on read

tuple header, including bitmask convert to new page format on read

data value format create old data type in new cluster

index page format reindex, or recreate index methods

TOAST page format convert to new page format on read
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Speed Comparison

Migration Method Minutes
dump/restore 300.0
dump with parallel restore 180.0
pg_upgrade in copy mode 44.0
pg_upgrade in link mode 0.7

Database size: 150GB, 850 tables

The last duration is 44 seconds.

Timings courtesy of

Stefan Kaltenbrunner

(mastermind on IRC)
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Release History

◮ 9.0 focused on stability

◮ 9.1 focused on performance for databases with many
relations

◮ 9.2 focused on improved debugging and reliability for
non-standard configurations

◮ 9.3 will focus on performance via parallelism and reduced
fsync activity
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Conclusion
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