
Creating
a Mature

Puppet System
github.com/rkhatibi/puppetcampla2013

Thanks Scale 11x
& PuppetLabs

● Attended 3x (or was it 4?)
● Discovered PuppetLabs at 8x
● I like Puppet (more sleep, better work)

Hi, My name is:
Ramin

● Sysadmin for seventeen years
● Currently at SnappyTV
● Yahoo!, Netzero
● Half dozen startups
● Not a ninja or rockstar

SnappyTV
● Cloud based video editing
● Immediate publishing
● Real time social media data

consumption and analysis

Mature?
● Operable (by more than 1 person)
● Consistent (updates and fresh installs)
● Flexible (hold on while I refactor, again)
● Enjoyable (the opposite of frustrating)

Getting There
● Process (remember less, do more)
● Technique (sneaky tricks)
● Documentation (words, boring words)
● Experimentation (aka failure)

Are you ready to
write code?

● Software development
● Your environment is important
● Take a few hours to set it up

Choose Your
Weapon (Editor)

● No need to change
● Add plugins
● post commit tools
● Some choices are more mature

Syntax
Highlighting

● git commit -m 'missing comma'
● git commit -m 'missing quote'
● git commit -m 'I hate my life!!!'
● Defense in depth

Code
Snippets

● Add code easily
● Reminders for resource types
● Config to your usage

It's
puppet-lint

● It's opinionated, use it anyway
● Chokes on complex quoting
● .puppet-lint.rc
● When in doubt, do what it says

Code Style is
Important

● Try to decide on one early
● Use the Puppet Style Guide
● aka puppet-lint
● Consistency is always good

Validate Your
Code

● puppet parser validate some.pp
● Doesn't catch everything
● Or work on templates

All Together
With VIM

● vim + pathogen
● syntastic, tabular
● vim-puppet, puppet-lint
● mv-vim-puppet

Exists for Other
Editors Too

● Emacs (for terrible people)
● Sublime (didn't look mature)
● Eclipse (very nice)
● Anything else?

Vagrant
for VMs

● Your experimentation system
● spin VMs up, test, destroy
● Cost of failure is very loooow

Testing
in Puppet

● Test from a fresh install
● Easy to miss dependencies

Nothing worse than discovering
ordering problems in prod

Puppet
Environments

● Use them, use them, use them
● stage and production
● directories on the master
● --env stage from client

Promote Code
to Each Env

● Standard development practice
● devel -> stage -> prod
● There are some caveats

Environment
Caveats

● Providers and facts leak
● Best to have an env per Puppet

master instance in adv usage
● This may change (I hope)

Setup Simple
Environments

● puppet.stage cname puppet02
● puppet cname puppet01
● Push to one, then the other

Clients to Env
● Just add to puppet.conf
● Ideally part of template
● production env is default
[agent]
<% if @fqdn =~ /(.*)stage(.*)/ -%>
environment = stage
<% end -%>

Watch Paths
● Might need to rearrange your

repo or push process
● Where will auth.conf live?
./puppet/production/modules/
./puppet/stage/modules/
./puppet/auth.conf
./puppet/hiera.yaml

Pushing
Your Code

● puppet_push stage
● puppet_push prod
● rsync, fabric, capistrano, etc
● Steal from your Developers or

reuse your normal process

Sync your
plugins

● --pluginsync from cli
● pluginsync=true under [main]
● Default in 3.x

Puppet
Master

● Is it ready for production traffic?
● Apache/Passenger is common
● Upgrade to Passenger 3.0.x
● debs/rpms available

Tuning
Passenger

● MaxPoolSize = CPU Cores x 2
● MinInstances CPU Cores
● RAM may limit this
● Each Puppet/Rack = 200MB(ish)

More Tuning
Passenger

● Use vhost or passenger.conf
● vhost if sharing machine
● PassengerPreStart <url>
● multi Ruby instances in 4.x

Apache
Tuning

● mpm-worker > prefork
● should "just work"
● more threads if > 8 cores
● nginx/passenger also an option

Other App
Servers

● Little personal experience
● Not worth it in my opinion
● Use what you know best

Isolate
the Master

● Easier to manage
● Quite easy to do
● Less likely to make mistakes

Like These
Problems

● certname = hostname (no! no!)
● rm -rf /var/lib/puppet/ssl
● puppet:puppet vs root:root

Split Your
Modules Too

● include puppet
● include puppetmaster
● shared nothing (almost)

Create Dir
Structure

● mkdir -p ./puppet/{etc,rack,var}
● ./puppet/pm.conf
● All in one tree

For Masters,
pm.conf

● no complicated concat
● config.ru is the entry point
● ARGV << "--config=pm.conf"
● Also takes other arguments

[main]
in pm.conf

[main]
confdir=/home/$some_user/puppet/etc
logdir=/home/$some_user/puppet/logs
vardir=/home/$some_user/puppet/var
ssldir=$vardir/ssl
rundir=/home/deploy/puppet/run
factpath=$vardir/lib/facter
templatedir=$confdir/templates

Simple to
Backup

● sudo tar -czvf p.tgz ./puppet/
● that's it
● ignore reports
● always backup certs

Can Re-Use
Locally

● rvm, ruby, gem install puppet
● mini puppet environment
● test new setups without affecting

the rest of the server

Master
Monitoring

● https:8140
● At least one Rack process
● logwatch
● ask for a catalog

Client
Monitoring

● Daemon running (or not)
● last_run_summary.yaml
● Easy to parse
● simple check in my github

You Can't
Escape Crons

● delete those reports
● couple of days is fine
● prune nodes in Dashboard
● PuppetDB (not sure yet)

Mysql Tuning
● Default my.cnf is useless
● Do at least the following
● Also prune tasks (rake -T)
innodb_buffer_pool_size = 512M
innodb_file_per_table = 1
key_buffer = 32M

Certs, not that
complicated

● Master cert
● Client cert
● Application cert
● /etc/hosts is not a solution.

Master Cert
● Multiple names
● Your clients don't care
● Migrations are easy
[master]
certname = puppet.example.com
dns_alt_names = puppet, puppet.new,
puppet.old, spam, puppet.localdomain,
baked_beans, puppet, puppet, spam, puppet.
localhost

App Certs
● Dashboard, PuppetDB, etc
● $your_app ?
● auth.conf matters

$ curl --cert $my_app_cert.pem --key
$my_app_private_key.pem -k -X DELETE -H
\"Accept: pson\" https://puppet.example.com:
8140/production/certificate_status/$myhostna
me"

Useful Cert
Commands

● client, $ rm -rf /var/lib/puppet/ssl
● $ puppet cert list --all
● $ puppet cert clean $fqdn

Invoking
Puppet

● sudo service puppet restart
● not too useful in testing
● or provisioning
● need something ad hoc

Puppet Agent
● Pass environments, hostname
● Change facts too
● Useful for troubleshooting

$ sudo puppet agent
$ sudo puppet agent --server puppet --pluginsync

$ sudo FACTER_role=database_master puppet agent --certname
dbm01 -tv

$ sudo puppet agent --server puppet.new --environment stage --
certname test01

Puppet Apply
● good for development
● testing without a puppet master
● aka masterless Puppet

$ puppet apply -l ./test.log manifest.pp
$ puppet apply --modulepath=~/puppet/modules -e "include ntp"
$ puppet apply --catalog catalog.json

Your multi-tool
puppet-stdlib

● Does a bit of everything
● validate, replace, convert
● Should be a talk in its own right

puppet-stdlib
validation

● One simple example
● Or I'll never finish this talk
● Really
if $order != '' and !is_integer($order) {
 fail('Only integers are allowed in the apt::pin order
param')
}

Towards a Better
Module

● No god modules
● Each module is a discrete chunk

of functionality
● Apply functionality as needed

Code
vs Data

● Data and code separation
● wordpress => db
● puppet => hiera
● Manipulate data, not code

Why
Separate?

● Your system will change
● versions, vhosts, aliases
● change code as little as possible
● portability and shared code

Write
Less Code

● Default values in your modules
still useful (if Debian do..)

● if { if { if { if { gah!
● Write once, feed data

Hiera, as in
hierarchical

● yaml by default, json available
● redis, mongo, mysql, others
● your hierarchy will take a few

tries to get right

Hiera, How
does it work?

● Data position matters, it's
hierarchy

● start at the top
● work your way down
● First match or collect

Hiera, the
Mistakes

● hiera_array is not for arrays
● hiera_hash is not for hashes
● Just hiera('some_var')

Hierarchy

:hierarchy:

- %{fqdn}
- %{environment}/%{role}
- %{role}
- %{environment}
- common

hieradata/stage/frontend.yaml
hieradata/production.yaml

Hiera, a data
example

apache_address: '127.0.0.1'
apt_server: 'apt.build.example.com'
facter_version: 'latest'
mysql_innodb: '256MB'
puppet_master: 'puppet.build.example.com'
puppet_version: 'present'
ruby_version: '1.8.7-p371'

Hiera, in
a module

class facter::install {

 $version = hiera('facter_version','present')

 package { 'facter':
ensure => $version,
notify => Class['puppet::service'],

 }
}

Where to
Concentrate?

● Execs < 5%
● Services ~ 10%
● Packages ~ 25%
● Files ~ 60% (Best use of time)

Manipulate
files with...

● Ruby ERB templates
● Puppet concat module
● Augeas

Templates
● <% I'm ruby, I execute code %>
● <%= I'll print the output %>
server_id = <%= @ipaddress.split('.').inject(0) {|total,value| (total << 8) + value.to_i} %>

expire_logs_days = <%= scope.lookupvar('mysql::data::expire_logs_days') %>

<% if (scope.lookupvar('mysql::data::slaves')).include? @clientcert then -%>
read_only = 1
<% end -%>

puppet-concat
● Download from the Forge
● remember pluginsync = true
● Useful for daemons that don't

support configdirs
● sshd, rsync, haproxy (sorta)

haproxy example

 concat { '/etc/haproxy/haproxy.cfg': }

 concat::fragment { 'haproxy_01_main':
target => '/etc/haproxy/haproxy.cfg',
order => '01',
content => template('haproxy/haproxy.cfg.erb'),

 }

define haproxy::configs ($order = '10',) {
 concat::fragment { "haproxy_${order}_${name}":

order => $order,
target => '/etc/haproxy/haproxy.cfg',
source => "puppet:///modules/haproxy/${name}",

 }
}

Augeas
● Single line replacement
● usage is less common
● install the cli tools in devel
● make sure you have installed a

recent version

Augeas is
best for...

● Files you can't fully control
● Files you don't want to control
● your last resort
● grub.conf, sysctl.conf

Simple
Documentation

● Start by reminding yourself

cat /etc/ntp.conf
 # PUPPETHEADER: This file is owned by Puppet.

ls -a /etc/apache2/sites-enabled/
 .00_puppet_will_delete_files
 .01_that_are_not_directly_managed
 .02_by_puppet_you_have_been_warned

Advance
Documentation

● Readme files in your modules
● with actual examples
● rdoc too

Thank You
for Coming

https://github.com/rkhatibi/
https://twitter.com/Ramin_DK
http://www.snappytv.com/

Appendix A
● http://www.slideshare.net/cstrep/puppet-at-opera-sofware-

puppetcamp-oslo-2013
● http://www.slideshare.net/PuppetLabs/130208-puppet4-

sysadminsmelblibrefinal
● Craig Dunn - http://www.slideshare.net/PuppetLabs/roles-talk
● http://blog.mozilla.org/it/2013/01/30/liveblog-how-to-use-puppet-

like-an-adult/

Appendix C
● Passenger rpms - http://passenger.stealthymonkeys.com/
● Passenger debs - http://apt.brightbox.net/

