

An Introduction to Advanced Usage

GNU Bash

James Pannacciulli
Sysadmin @ (mt) Media Temple

http://talk.jpnc.info/bash_scale11x.pdfhttp://talk.jpnc.info/bash_scale11x.pdf

This is a talk about Bash, not about GNU/Linux in
general and not about the wealth of high quality
command line utilities which are often executed from
within Bash.

The assumed operating system is GNU/Linux, with a
recent version of Bash. This talk is almost entirely
Bash 3 compatible; I will try to point out any features
or examples which require Bash 4.

I do not consider myself an expert. I am a
professional user and an enthusiast and I want to
share some of what I am learning, because Bash is a
wonderful shell.

Notes about the presentation:

Command Types
File:

External executable file.

Builtin:

Command compiled in as
part of Bash.

Keyword:

Reserved syntactic word.

Function:

User definable, named
compound command.

Alias:

User definable, simple
command substituion.

Getting Help
type:

Determine type of command,
list contents of aliases and

functions.

help:

Display usage information about
Bash builtins and keywords.

apropos:

Search man pages.

man:

System manual.

info:

Advanced manual system
primarily used for GNU

programs.

General reference commands worth running:

 man bash

 man man

 man -a intro

help

help help

info info

info

Some Useful Definitions

word

list

name

parameter

Sequence of characters considered to be a
single unit.

Sequence of one or more commands or
pipelines.

A word consisting only of alphanumeric
characters and underscores. Can not begin
with a numeric character.

An entity that stores values. A variable is a
parameter denoted by a name; there are
also positional and special parameters.

Compound Commands
Iteration:

Continuously loop over list of commands delineated by the
keywords do and done.

while until for select

Conditionals:

Execute list of commands only if certain conditions are met.

if case

Command groups:

Grouped list of commands, sharing any external redirections
and whose return value is that of the list.

(list) { list; }

While and Until Loops

while list1; do list2; done

Loop over list2 of commands until list1 returns a

non-zero status.

until list1; do list2; done

Loop over list2 of commands until list1 returns a

status of 0.

The following construct is incredibly handy for
processing lists of items: while read

For and Select Loops
for name in words; do list; done

Loop over list of commands, assigning name the value of each word
until all words have been exhausted.

for ((expr1 ; expr2 ; expr3)); do list; done

Arithmetically Evaluate expr1, then loop over list of commands
until expr2 evaluates to 0. During each iteration, evaluate expr3.

select name in words; do list; done

Create a menu item for each word. Each time the user makes a
selection from the menu, name is assigned the value of the selected

word and REPLY is assigned the index number of the selection.

Conditionals: if
if list1; then list2; fi

Evaluate list1, then evaluate list2 only if list1 returns a

status of 0.

if list1; then list2; else list3; fi

Evaluate list1, then evaluate list2 only if list1 returns a status
of 0. Otherwise, evaluate list3.

if list1; then list2; elif list3; then list4; else list5; fi

Evaluate list1, then evaluate list2 only if list1 returns a status
of 0. Otherwise, evaluate list3, then evaluate list4 only if list3

returns a status of 0. Otherwise, evaluate list5.

Pattern Matching
Pattern matching is used in Bash for some types

of parameter expansion, pathname
expansion, and the [[and case keywords.

*

?

[character class]

Matches any string, including null.

Matches any single character.

Matches any one of the characters

enclosed between [and].

The following predefined character classes are available

with the [:class:] syntax:

alnum alpha ascii blank cntrl digit graph lower print punct space

Conditionals: case

case word in

 pattern1)

 list1;;

 pattern2 | pattern3)

 list2;;

esac

Match word against each
pattern sequentially.

When the first match is
found, evaluate the list

corresponding to that
match and stop matching.

Command Groups
Subshell:

Evaluate list of commands in a subshell, meaning that its
environment is distinct from the current shell and its

parameters are contained.

(list)

Group command:

Evaluate list of commands in the current shell, sharing
the current shell's environment.

Command and Process Substitution
Command substitution:

Replace the command substitution with the output of
its subshell.

$(list)

Process substitution:

Replace the process substitution with the location of a
named pipe or file descriptor which is connected to the

input or output of the subshell.

>(list) <(list)

Parameters
Positional Parameters:

Parameters passed to command, encapsulating words on the
command line as arguments.

$1 $2 $3 $4 $5 $6 $7 $8 $9 ${10} ${11} ...

Special Parameters:

Parameters providing information about positional parameters,
the current shell, and the previous command.

$* $@ $# $- $$ $0 $! $? $_

Variables:

Parameters which may be assigned values by the user. There are
also some special shell variables which may provide information,

toggle shell options, or configure certain features.

name=string For variable assignment, “=”
must not have adjacent spaces.

Parameter Expansion: Conditionals
(check if variable is unset, empty, or non-empty)

${param-default}

${param=default}

${param+alternate}

${param?error}

Treat empty as unset:

${param:-default}

${param:=default}

${param:+alternate}

${param:?error}

default

name=default

–

error

default

name=default

–

error

unset param
–

–

alternate

–

default

name=default

–

error

param=”gnu”
gnu

gnu

alternate

gnu

gnu

gnu

alternate

gnu

param=””

Parameter Expansion: Substrings

Extraction:

${param:offset}

${param:offset:length}

Removal from left edge:

${param#pattern}

${param##pattern}

Removal from right edge:

${param%pattern}

${param%%pattern}

ecar

ec

ecar

ar

race

ra

param=”racecar”

offset of 3, length of 2

pattern is '*c'

pattern is 'c*'

Parameter Expansion:
Indirection, Listing, and Length

Indirect expansion:

${!param}

List names matching prefix:

${!prefix*} or “${!prefix@}”

List keys in array:

${!name[*]} or “${!name[@]}”

Expand to length:

${#param}

long

param=”parade”; parade=”long”;
name=(gnu not unix); prefix is “pa”

parade param

0 1 2

6

Parameter Expansion: Pattern Substitution

Substitution:

${param/pattern/string}

${param//pattern/string}

Substitute at left edge:

${param/#pattern/string}

Substitute at right edge:

${param/%pattern/string}

raTcar

raTTr

Tacecar

racecaT

param=”racecar”

pattern is 'c?', string is 'T'

pattern is 'r', string is 'T'

Tests

-n string
-z string

string1 == string2
string1 != string2

-e file
-f file
-d file

-t fd

string is non-empty
string is empty
string1 and string2 are the same
string1 and string2 are not the same
file exists
file exists and is a regular file
file exists and is a directory
fd is open and refers to a terminal

[expression] or test expression
Evaluate the expression with the test builtin command.

[[expression]]
Evaluate the expression with the [[keyword; word

splitting and pathname expansion are not performed.
Additionally, the righthand side of a string comparison

(==, !=) is treated as a pattern when not quoted, and an
additional regular expression operator, =~, is available.

Arithmetic Expansion
((math and stuff))

name++
name--

++name
--name

increment name after evaluation
decrement name after evaluation

increment name before evaluation
decrement name before evaluation

➢ Can be used as a test, returning 0 if comparison,
equality, or inequality is true, or if the calculated
number is not zero.

➢ Can provide in-line results when used like
command substitution – $((math)).

➢ Bash does not natively support floating point.

- + * / % ** <= >= < > == != && ||

Brace Expansion
Arbitrary String Generation

String generation:

prefix{ab,cd,ef}suffix

Sequence generation:

prefix{x..y}suffix

Sequencing by specified increment:

prefix{x..y..incr}suffix

Brace expansion may be
nested and combined.

The prefix and suffix
are optional.

Functions
Functions are compound commands which are

defined in the current shell and given a function name,
which can be called like other commands.

func.name () compound_cmd
Assign compound_cmd as function named func.name.

func.name () compound_cmd [>,<,>>] filename
Assign compound_cmd as function named func.name,
which will always redirect to (>), from (<), or append to

(>>) the specified filename.

Example code from the talk
while read var1 var2; do echo $var2 $var1; done
echo -e 'one two\none two three' > testfile
while read var1 var2; do echo $var2 $var1; done < testfile

for i in one two 'three four'; do echo "_-_-_-$i-_-_-_"; done

select choice in one two 'three four'; do echo "$REPLY : $choice"; done

if ["a" == "a"]; then echo "yep"; else echo "nope"; fi
if ["a" == "b"]; then echo "yep"; else echo "nope"; fi

case one in o) echo 'o';; o*) echo 'o*';; *) echo 'nope';; esac

unset x
(x=hello; echo $x); echo $x
{ x=hello; echo $x; }; echo $x

echo b; echo a | sort
(echo b; echo a) | sort

Example code from the talk
echo "$(echo "$(echo "$(echo "$(ps wwf -s $$)")")")"
echo this `echo quickly \`echo gets \\\`echo very \\\\\\\`echo ridiculous\\\\\\\`\\\`\``
echo "$(<testfile)"

PS1=”[$?] $PS1” # show exit status of prev. cmd in prompt
[-t 0]
[-t 2]
[-t 2] 2>/dev/null
testvar=”hello world”
[$testvar == “hello world”] # fails
[“$testvar” == “hello world”]
[[$testvar == “hello world”]]
[[$testvar == hello?w*d]]

((0))
((1))
echo $((3 * 2 - (11 * 5)))

Example code from the talk
echo bash{,e{d,s},ful{,ly,ness},ing}
echo {1..5}{0,5}%
echo {10..55..5}%
echo {a..z..12}
man{,}
cp -v filename{,.bak} # quick backup of filename

Bash can actually complete (like tab completion) a
list of files into nested brace expansion format with
the ESC-{ key combination. All key bindings may

be displayed with the bind -P command.

Function examples
reverse ()
 for charlist
 do local arg
 while ((${#charlist}))
 do
 echo -n "${charlist:(-1)}"
 charlist="${charlist:0:(-1)}"
 done
 ((++arg == ${#@})) &&\
 echo ||\
 echo -n "${IFS:0:1}"
 done

Example usage:
reverse one two 'three four'

Function examples
memtop () {
for i in /proc/[0-9]*
 do
 echo -e "${i##*/}\t$(<$i/comm)\t$(pmap -d "${i##*/}" |\
 tail -1 | {
 read a b c mem d
 echo $mem
 }
)"
 done |\
 sort -nr -k3 |\
 head -$((LINES - 3)) |\
 column -t
} 2>/dev/null

Example usage:
memtop
export -f memtop; watch bash -c memtop

A Few Good Links

➢ http://www.gnu.org/software/bash/

➢ http://tiswww.case.edu/php/chet/bash/NEWS

➢ http://tldp.org/LDP/abs/html/index.html

➢ http://wiki.bash-hackers.org/doku.php

http://www.gnu.org/software/bash/
http://tiswww.case.edu/php/chet/bash/NEWS
http://tldp.org/LDP/abs/html/index.html
http://wiki.bash-hackers.org/doku.php

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

