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This is a talk about Bash, not about GNU/Linux in 
general and not about the wealth of high quality 
command line utilities which are often executed from 
within Bash.

The assumed operating system is GNU/Linux, with a 
recent version of Bash.  This talk is almost entirely 
Bash 3 compatible; I will try to point out any features 
or examples which require Bash 4.

I do not consider myself an expert.  I am a 
professional user and an enthusiast and I want to 
share some of what I am learning, because Bash is a 
wonderful shell.

Notes about the presentation:



  

Command Types
File:

External executable file.

Builtin:

Command compiled in as 
part of Bash.

Keyword:

Reserved syntactic word.

Function:

User definable, named 
compound command.

Alias:

User definable, simple 
command substituion.



  

Getting Help
type:

Determine type of command, 
list contents of aliases and 

functions.

help:

Display usage information about 
Bash builtins and keywords.

apropos:

Search man pages.

man:

System manual.

info:

Advanced manual system 
primarily used for GNU 

programs.

General reference commands worth running:

   man bash

   man man

   man -a intro

help

help help

info info

info



  

Some Useful Definitions

word

list

name

parameter

Sequence of characters considered to be a 
single unit.

Sequence of one or more commands or 
pipelines.

A word consisting only of alphanumeric 
characters and underscores.  Can not begin 
with a numeric character.

An entity that stores values.  A variable is a 
parameter denoted by a name; there are 
also positional and special parameters.



  

Compound Commands
Iteration:

Continuously loop over list of commands delineated by the 
keywords do and done.

while    until    for    select

Conditionals:

Execute list of commands only if certain conditions are met.

if    case

Command groups:

Grouped list of commands, sharing any external redirections 
and whose return value is that of the list.

(list)   { list; }



  

While and Until Loops

while list1; do list2; done

Loop over list2 of commands until list1 returns  a

non-zero status.

until list1; do list2; done

Loop over list2 of commands until list1 returns a

status of 0.

The following construct is incredibly handy for 
processing lists of items: while read



  

For and Select Loops
for name in words; do list; done

Loop over list of commands, assigning name the value of each word 
until all words have been exhausted.

for (( expr1 ; expr2 ; expr3 )); do list; done

Arithmetically Evaluate expr1, then loop over list of commands 
until expr2 evaluates to 0.  During each iteration, evaluate expr3.

select name in words; do list; done

Create a menu item for each word.  Each time the user makes a 
selection from the menu, name is assigned the value of the selected 

word and REPLY is assigned the index number of the selection.



  

Conditionals: if
if list1; then list2; fi

Evaluate list1, then evaluate list2 only if list1 returns a

status of 0.

if list1; then list2; else list3; fi

Evaluate list1, then evaluate list2 only if list1 returns a status 
of 0.  Otherwise, evaluate list3.

if list1; then list2; elif list3; then list4; else list5; fi

Evaluate list1, then evaluate list2 only if list1 returns a status 
of 0.  Otherwise, evaluate list3, then evaluate list4 only if list3 

returns a status of 0.  Otherwise, evaluate list5.



  

Pattern Matching
Pattern matching is used in Bash for some types 

of parameter expansion, pathname 
expansion, and the [[ and case keywords.

*

?

[character class]

Matches any string, including null.

Matches any single character.

Matches any one of the characters 

enclosed between [ and ].

The following predefined character classes are available 

with the [:class:] syntax:

alnum alpha ascii blank cntrl digit graph lower print punct space



  

Conditionals: case

case word in

     pattern1) 

          list1;;

     pattern2 | pattern3) 

          list2;; 

esac

Match word against each 
pattern sequentially.  

When the first match is 
found, evaluate the list 

corresponding to that  
match and stop matching. 



 

Command Groups
Subshell:

Evaluate list of commands in a subshell, meaning that its 
environment is distinct from the current shell and its 

parameters are contained.

(list)

Group command:

Evaluate list of commands in the current shell, sharing 
the current shell's environment.



  

Command and Process Substitution
Command substitution:

Replace the command substitution with the output of 
its subshell.

$(list)

Process substitution:

Replace the process substitution with the location of a 
named pipe or file descriptor which is connected to the 

input or output of the subshell.

>(list)    <(list)



  

Parameters
Positional Parameters:

Parameters passed to command, encapsulating words on the 
command line as arguments.

$1  $2  $3  $4  $5  $6  $7  $8  $9  ${10}  ${11} ...

Special Parameters:

Parameters providing information about positional parameters, 
the current shell, and the previous command.

$*  $@  $#  $-  $$  $0  $!  $?  $_

Variables:

Parameters which may be assigned values by the user.  There are 
also some special shell variables which may provide information, 

toggle shell options, or configure certain features.

name=string For variable assignment, “=” 
must not have adjacent spaces.



  

Parameter Expansion: Conditionals
(check if variable is unset, empty, or non-empty)

${param-default}

${param=default}

${param+alternate}

${param?error}

Treat empty as unset:

${param:-default}

${param:=default}

${param:+alternate}

${param:?error}

default

name=default 

–

error

default

name=default

–

error

unset param
–

–

alternate

–

default

name=default

–

error

param=”gnu”
gnu

gnu

alternate

gnu

gnu

gnu

alternate

gnu

param=””



  

Parameter Expansion: Substrings

Extraction:

${param:offset}

${param:offset:length}

Removal from left edge:

${param#pattern}

${param##pattern}

Removal from right edge:

${param%pattern}

${param%%pattern}

ecar

ec

ecar

ar

race

ra

param=”racecar”

offset of 3, length of 2

pattern is '*c'

pattern is 'c*'



  

Parameter Expansion:
Indirection, Listing, and Length

Indirect expansion:

${!param}

List names matching prefix: 

${!prefix*}  or  “${!prefix@}”

List keys in array:

${!name[*]}  or  “${!name[@]}”

Expand to length:

${#param}

long

param=”parade”; parade=”long”; 
name=( gnu not unix ); prefix is “pa”

parade   param

0   1   2

6



  

Parameter Expansion: Pattern Substitution

Substitution:

${param/pattern/string}

${param//pattern/string}

Substitute at left edge:

${param/#pattern/string}

Substitute at right edge:

${param/%pattern/string}

raTcar

raTTr

Tacecar

racecaT

param=”racecar”

pattern is 'c?', string is 'T'

pattern is 'r', string is 'T'



  

Tests

-n string
-z string

string1 == string2
string1 != string2

-e file
-f file
-d file

-t fd

string is non-empty
string is empty
string1 and string2 are the same
string1 and string2 are not the same
file exists
file exists and is a regular file
file exists and is a directory
fd is open and refers to a terminal

[ expression ] or test expression
Evaluate the expression with the test builtin command.

[[ expression ]]
Evaluate the expression with the [[ keyword; word 

splitting and pathname expansion are not performed.  
Additionally, the righthand side of a string comparison 

(==, !=) is treated as a pattern when not quoted, and an 
additional regular expression operator, =~, is available.



  

Arithmetic Expansion
(( math and stuff ))

name++
name--

++name
--name

increment name after evaluation
decrement name after evaluation

increment name before evaluation
decrement name before evaluation

➢ Can be used as a test, returning 0 if comparison, 
equality, or inequality is true, or if the calculated 
number is not zero.

➢ Can provide in-line results when used like 
command substitution – $(( math )).

➢ Bash does not natively support floating point.

-    +    *    /    %    **    <=    >=    <    >    ==    !=    &&    ||



  

Brace Expansion
Arbitrary String Generation

String generation:

prefix{ab,cd,ef}suffix

Sequence generation:

prefix{x..y}suffix

Sequencing by specified increment:

prefix{x..y..incr}suffix

Brace expansion may be 
nested and combined.

The prefix and suffix 
are optional.



  

Functions
Functions are compound commands which are 

defined in the current shell and given a function name, 
which can be called like other commands.

func.name () compound_cmd
Assign compound_cmd as function named func.name.

func.name () compound_cmd [>,<,>>] filename
Assign compound_cmd as function named func.name, 
which will always redirect to (>), from (<), or append to 

(>>) the specified filename.



  

Example code from the talk
while read var1 var2; do echo $var2 $var1; done
echo -e 'one two\none two three' > testfile
while read var1 var2; do echo $var2 $var1; done < testfile

for i in one two 'three four'; do echo "_-_-_-$i-_-_-_"; done

select choice in one two 'three four'; do echo "$REPLY : $choice"; done

if [ "a" == "a" ]; then echo "yep"; else echo "nope"; fi
if [ "a" == "b" ]; then echo "yep"; else echo "nope"; fi

case one in o) echo 'o';; o*) echo 'o*';; *) echo 'nope';; esac

unset x
(x=hello; echo $x); echo $x
{ x=hello; echo $x; }; echo $x

echo b; echo a | sort
(echo b; echo a) | sort



  

Example code from the talk
echo "$(echo "$(echo "$(echo "$(ps wwf -s $$)")")")"
echo this `echo quickly \`echo gets \\\`echo very \\\\\\\`echo ridiculous\\\\\\\`\\\`\``
echo "$(<testfile)"

PS1=”[$?] $PS1”   # show exit status of prev. cmd in prompt
[ -t 0 ]
[ -t 2 ]
[ -t 2 ] 2>/dev/null
testvar=”hello world”
[ $testvar == “hello world” ]  # fails
[ “$testvar” == “hello world” ]
[[ $testvar == “hello world” ]]
[[ $testvar == hello?w*d ]]

(( 0 ))
(( 1 ))
echo $(( 3 * 2 - (11 * 5) ))



  

Example code from the talk
echo bash{,e{d,s},ful{,ly,ness},ing}
echo {1..5}{0,5}%
echo {10..55..5}%
echo {a..z..12}
man{,}
cp -v filename{,.bak}   # quick backup of filename

Bash can actually complete (like tab completion) a 
list of files into nested brace expansion format with 
the ESC-{ key combination.  All key bindings may 

be displayed with the bind -P command.



  

Function examples
reverse ()
  for charlist
  do local arg
    while ((${#charlist}))
      do
        echo -n "${charlist:(-1)}"
        charlist="${charlist:0:(-1)}"
      done
  ((++arg == ${#@})) &&\
    echo ||\
    echo -n "${IFS:0:1}"
  done

Example usage:
reverse one two 'three four'



  

Function examples
memtop () {
for i in /proc/[0-9]*
  do
    echo -e "${i##*/}\t$(<$i/comm)\t$(pmap -d "${i##*/}" |\
      tail -1 | {
        read a b c mem d
        echo $mem
      }
    )"
  done |\
  sort -nr -k3 |\
  head -$((LINES - 3)) |\
  column -t
} 2>/dev/null

Example usage:
memtop
export -f memtop; watch bash -c memtop



  

A Few Good Links

➢ http://www.gnu.org/software/bash/

➢ http://tiswww.case.edu/php/chet/bash/NEWS

➢ http://tldp.org/LDP/abs/html/index.html

➢ http://wiki.bash-hackers.org/doku.php

http://www.gnu.org/software/bash/
http://tiswww.case.edu/php/chet/bash/NEWS
http://tldp.org/LDP/abs/html/index.html
http://wiki.bash-hackers.org/doku.php
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