

Building Storage as a Service with OpenStack

Greg Elkinbard Senior Technical Director

© MIRANTIS 2012

About the Presenter

Greg Elkinbard

- Senior Technical Director at Mirantis
- Builds on demand IaaS and PaaS layers for public/private clouds
- Over 2 decades of experience in platform and cloud engineering
- Focus on breakthrough technology for cloud and HPC

- OpenStack: quick background
- Understanding cloud storage capabilities
- Cloud & legacy storage platforms
- Key open source storage technologies
- Architecting for Opportunities Storage as a Service in OpenStack Cloud
- Q&A and where to download today's slides

About OpenStack

What is OpenStack?

- An open source community focused on building a software platform for building private and public cloud
- Core projects include:
 - Nova compute
 - Swift object store
 - Glance image management
 - Keystone auth
 - Horizon dashboard
 - Quantum network orchestration
 - Cinder block storage
- Open sourced under Apache 2.0 license
- 6000 members in 87 countries

A brief overview of key problems OpenStack was designed to solve

VMs on demand

- provisioning
- snapshotting
- Multi-tenancy
 - quotas for different users
 - user can be associated with multiple tenants

Volumes

Object storage for VM images and arbitrary files

CLOUD STORAGE

Understanding Capabilities

OpenStack Storage Architecture

- BUILT FOR DEDE CLOUD SOFTWARE
- 3 storage tiers to fill different storage needs
- Ephemeral storage tier
- Persistent storage tier
- Object storage tier

OpenStack Ephemeral Storage

- Tied to lifecycle of individual VM
- Guest Boot Volume
- Typically all that is needed for small guests

- Types
 - Compute server local drives (common option)
 - Low Latency
 - Low Cost
 - Longer Live Migration
 - No guest H/A
 - Shared storage NAS or SAN
 - Higher Cost, More features
 - Thin provisioning
 - Faster Migration
 - Standby H/A
 - Not managed by OpenStack

- Persistent or ephemeral lifecycle
- Shared storage managed by OpenStack

**Grizzly is the next release of OpenStack, due out in Q2 2013*

OpenStack Ephemeral Storage Folsom

- Optional Secondary Drive
 - Unformatted Volume
 - Removed when VM is deleted

• Boot

from Volume (Cinder)

- Experimental
- Manual steps required
- Better support should come in Grizzly*

Architecting Ephemeral Storage

OpenStack Persistent Storage

- Projects
 - Essex Nova-Volumes
 - Folsom Cinder
- Block Storage Service
 - Create iSCSI volumes on demand
 - Expandable: plug-in storage drivers
 - Snapshots and basic security ACLs
- Basic Service: Linux box with LVM and iSCSI target package
- Advanced Services to complement Cinder: Nexenta, NetApp, Ceph
 - Thin provisioning
 - Native Snapshot support
 - Built in H/A

High Level Roadmap includes

- Metering
- Quotas
- Cloning
- Backup
- Volume Scheduling (QOS)

Architecting Persistent Storage

© MIRANTIS 2012

OpenStack Object Storage (project "Swift")

- RESTful APIs
- Simple but Scalable Service (6+ PB)
- Geo replication
- Architecture
 - DHT with anti-entropy services
 - Proxy Servers
 - Object Servers
- Swift matches most of the S3 functionality and has a S3 API shim as well as native API
- By comparison, AWS EC2's "S3" service also offers
 - Support for regions
 - Large Object Handling
 - Payment transfer bucket API

OpenStack Object Storage Hardware

- Basic Hardware: Linux boxes with XFS
 - Low cost hardware for object servers
 - More powerful servers for proxies.
 - Account/Containers need higher IOPS
 - get a better io subsystem on proxies
 - co-locate account and container rings with proxies
- Alternative Object Stores:
 - Nexenta's enhanced Swift
 - Ceph RadosGW
 - Gluster UFO (Unified File and Object)

Comparing Cloud and Legacy

Key Storage Platform Types

- NAS and Scale Out NAS
- SAN
- Shared filesystems
- Object Storage

• Large NAS arrays or tightly coupled clusters

- Isilon, Ibrix, BlueArc, SONAS, OnTap GX
- Present a global namespace to entire enterprise
- Centralized and relatively expensive
- Cloud model takes a different approach
 - Tenants do not need a lot of storage; no global namespace across tenants
 - Instead of large storage arrays, offer many smaller ones (give each tenant its own pool of storage)
- You let the cloud platform manage the provisioning and control of resource allocation

- Dedicated Storage network
 - Fibre Channel or iSCSI
 - Tighly coupled collection storage switches, storage arrays and storage management software
- Centralized and relatively high-cost
- Cloud model is different
 - Guests do not need a lot of individual storage
 - Instead of large arrays, give each guest its own storage (across a pool of smaller arrays)
- You let the cloud platform manage the provisioning and control of resource allocation

- Often a complement to SAN & replacement for NAS
- Legacy: Veritas, CXFS, GPFS
 - Limited Scalability
 - Relatively high cost
- OpenSource alternatives
 - Lustre, Gluster, Ceph
 - Designed to large scale
 - Much lower costs
 - Higher aggregate performance

Object Storage

- Non-POSIX
- HTTP based APIs (e.g., REST)
- Relaxed consistency
- EMC Atmos was one of the early systems
 - Now all vendors provide a REST interface to legacy storage arrays
- Openstack Swift
 - Higher scalability
 - Lower cost
 - Simplified customization

OPEN SOURCE OPTIONS:

Key Storage Technologies

- Gluster: Distributed network file system
- Lustre: Parallel large scale distributed file system
- Ceph: High-performance distributed object store
- Swift: OpenStack distributed cloud object store

- Distributed Network File System
- Distributed Metadata Management
- Stackable translators provide different access methods
 - Native
 - NFS
 - Object
 - HDFS
- Good midsize/medium performance, replication based data protection
- Openstack integration into ephemeral storage tier and as a Swift replacement
- Good as guest shared file system for PaaS deployments

- Distributed FS for HPC market
- Centralized Metadata management
- Optimized for extreme scalability and read/write performance
- Network equivalent of Raid-0
- Great speed but no network data protection
- Metadata performance is an issue
- Currently no Openstack integration

- Distributed object store
- Different access methods
 - Distributed FS

• API

• Object Store

- Block Store
- Good performance, scalability, reliability, sophisticated failure domain isolation
- Well integrated into OpenStack
 - Glance Image Store connector
 - Cinder connector
 - Persistent storage tier
 - Ephemeral storage tier, using boot from volume
 - Replacement for Swift

- Distributed Object Storage
- DHT based, lightweight distributed meta data
- Rest API only
- Designed for high scalability and reliability
- Mid level IO performance
- Default object storage for Openstack

Open Source Platforms & Use Cases

Consider...

If you need	Gluster	Lustre	Ceph	Cinder	Swift
NAS and Scale Out NAS		~	~		
SAN			~	✓ consider with Ceph Plugin or other storage systems	
Shared Filesystems		~	~		
Object Storage	~		~		~

STORAGE AS A SERVICE

Opportunities and Architecture for OpenStack Cloud

© MIRANTIS 2012

Multi-tenant service which

- 1. Presents storage via a well-defined set of remotely accessible APIs
- 2. Abstracts the actual storage implementation
- 3. Can be a foundation for more specialized functions: DR, backup, document sharing, etc.

Using Storage as a Service

- Access Methods
 - Object
 - Block
 - File
- OpenStack a good platform
 - Powerful set of components
 - Enhancements within easy reach

Object Services

MIRANTIS

Access Method: File Services

BUILT FOR DECEMBER OF CLOUD SOFTWARE

- Cloud Drive
- Multi Tenant NAS

Use Case: using Swift as a cloud drive

- Swift: backend store
- Commercial or Open Source front end clients
 - Commercial: Gladinet, Cloudberry, ExpanDrive, Webdrive
 - Open Source: Cyberduck, Sparkleshare, Syncany
- Removable Drive or "Windows Explorer-like" UI
- Use Cases
 - Backup to the Cloud
 - Share Pictures, Music, Documents

- Physical hosts or virtual guests
- OpenStack can be extended to manage NAS storage pools; creates or partitions storage, on demand
 - Virtual storage array
 - Quantum creates network segregation
 - Nova-compute provides a pool for Virtual NAS heads
 - Local drives or Cinder provide back end storage
 - Physical storage array
 - Quantum creates network segregation
 - Cinder partitions and manages physical storage arrays
 - Secure separation requires internal virtualization support in storage array, as in NetApp Virtual Filer

- Cinder already acts as a SAN for the virtual guests
- Can be expanded to SAN services to bare metal nodes (where there is no hypervisor)
 - Use Quantum to partition the network
 - Use OpenStack Cinder to provision the storage and set ACLs
- Physical hosts require broader security than guests
 - Use VSA (Virtual Storage Array) with storage provided by local drives or Cinder

- OpenStack and its 3 storage tiers
 - Ephemeral, Persistent and Object Stores
- Open Source storage projects solve key storage needs at a lower cost
- Storage as a Service can be implemented with OpenStack

Download slides at http://bit.ly/mirantis-StaaS

© MIRANTIS 2012