
  
 

Linux Special Permissions 
 

Student Manual 
 
 
 
 
 
 
 
 
 
 
 
 
 

  
 www.OneCourseSource.com  

 



  
 

Advantages of OCS instructor-led online classes 
 

Feature Classroom 
training 

Other online 
classes 

OCS online 
classes 

OCS Office Hours - On select Fridays each month, your instructor is available online 
to answer questions and assist students. This after-class support is unique in the 
industry. 

   

Small Class - OCS class sizes are limited to 15 students, providing you with more 
personal interaction with the instructor.    
Recorded lecture - OCS class lecture are recorded and participants have access to 
the recorded lecture for up to 45 days after class ends.    
First Day Free guarantee - If after the first day of class you are not satisfied, notify 
your instructor and receive a full refund.    
100% Guaranteed to Run Classes - Sign up for an OCS online class and be 
assured that it will run.  Classes are not canceled due to low enrollment.    
Choose your device - Take classes on the device of your choice: Windows, Mac, 
Linux, Android, ipad, iphone, etc.    
Virtual Machine - Don't want to reinstall your own system?  Your OCS class comes 
with a free VM (Virtual Machine).    
End of Class project - When class is over, your learning does not end.  Take 
advantage of OCS's unique End of Class projects to help you affirm your new found 
knowledge. 

   

Digital Course materials - Course content is provided in searchable PDF format 
(except when third-party courseware is required).    
Courseware updates - If the courseware used in your class changes within 1 
calendar year, you are provided with a new free digital copy of the course materials 
(exception: third-party materials). 

   

Price - OCS instructor-led online classes are the most affordable in the industry. 
   

Linux cert flashcards for Linux+/LPIC - Free with your OCS Linux+/LPIC training, 
these online flashcard help you prepare for your certification exams. 

Varies Varies  
Learn From Home - Learn from the comfort of your home or office. 

   
Real-time Instructor-Led - All OCS classes are lead by highly qualified instructors. 

 Varies  
Interact with other students - Enhance your learning experience by interacting with 
students online during your class.  Varies  
Lectures and hands on-labs - All classes include instructor-led lectures and hands-
on labs.    



  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Upcoming Schedule 
 
Course Dates Cost SCALE discount 

Linux+ Prep (for LX0-101)  March 25-29 $1,900   $1,235 
Beginning Perl  April 2-4 $995   $647 
Linux+ Prep (for LX0-102)  April 8-12 $1,900   $1,235 
Intermediate Perl  April 16-18 $995   $647 
Linux Essentials1 April 22-26 $1,900   $1,235 
Beginning Tcl/TK April 30-May 2 $995   $647 
Linux System Administration I1 May 6-10 $1,900   $1,235 
Beginning Perl  May 21-23 $995   $647 
Linux System Administration II2 May 27-31 $1,900   $1,235 
Intermediate Perl June 4-6 $995   $647 
Linux+ Prep (for LX0-101) June 10-14 $1,900   $1,235 
Advanced Perl June 18-20 $995   $647 
Linux+ Prep (for LX0-102) June 24-28 $1,900   $1,235 

 
1Prepares for RHCSA and RHCE   2Prepares for RHCE 

SCALE Discounts 
SCALE attendees can lock in a huge 35% off discount by signing up for classes during the SCALE 
event.  Just provide your contact information and you will be given a 35% discount when you register 
for class.  You are not obligated if you later decide that you don't wish to attend the training.  To receive 
this discount, you must register for your class within 45 days.  
 
If you don't sign up for a class during SCALE, you can still receive a 20% SCALE discount by entering  
the code SCALE-2013 during checkout.  To receive this discount, you must register for your class 
within 30 days. 
 



  

Linux Speical Permissions ©2013 One Course Source, Inc Page 4 
 www.OneCourseSource.com 
 

 

 Unit One  
Linux Special Permission 

 

 
Unit topics:  Page 
 1.1 ................................................................................................. Special Permission: setuid  5 
 1.2 ................................................................................................. Special Permission: setgid  8 
 1.3 ............................................................................................. Special Permission: sticky bit  13 
 1.4............................................................................................................Access Control Lists  15 
 1.5...................................................................................... Summary of Commands and Files 25 
 
 
 
 
 
 



  Notes: 

Linux Speical Permissions ©2013 One Course Source, Inc Page 5 
 www.OneCourseSource.com 
 

1.1  Special Permission: setuid 
 
When a user runs a command that accesses files, the system checks the user’s 
permissions for the files.  In some cases, this may cause problems. 
 
Consider a command like passwd.  When this command runs, it edits the 
/etc/shadow file.  If you look at the permissions of the /etc/shadow file, you 

will see that the permissions are: r-- --- --- 
 
So, when the typical user runs the passwd command and the system tries to 
access (modify) the /etc/shadow file, if it will deny the user access…except… 
 
The passwd command has a special permission set on it called setuid.  When 
the passwd command is run and the command accesses files, the system 
pretends that the person accessing the file is the owner of the passwd 
command, not the person who is running the command. 
 

[root@ocs root]# ls -l /bin/passwd 
-r-sr-sr-x   3 root     sys        96796 Jul 15  1997 /bin/passwd 
[root@ocs root]#  id 
uid=10051(bob) gid=1(other) 
# passwd    (accesses files as root, not bob) 



  Notes: 

Linux Speical Permissions ©2013 One Course Source, Inc Page 6 
 www.OneCourseSource.com 
 

To set setuid permission 
 
The setuid permission can be set using either octal or symbolic methods: 
 

[root@ocs root]#  ls -l /usr/bin/ls 
-r-xr-xr-x   1 bin      bin        17440 Jul 15  1997 /usr/bin/ls 
[root@ocs root]#  chmod a+s /usr/bin/ls 
[root@ocs root]#  ls -l /usr/bin/ls 
-r-sr-xr-x   1 bin      bin        17440 Jul 15  1997 /usr/bin/ls 
[root@ocs root]#  chmod a-s /usr/bin/ls 
[root@ocs root]#  ls -l /usr/bin/ls 
-r-xr-xr-x   1 bin      bin        17440 Jul 15  1997 /usr/bin/ls 
[root@ocs root]# 
[root@ocs root]#  chmod 4555 /usr/bin/ls 
[root@ocs root]#  ls -l /usr/bin/ls 
-r-sr-xr-x   1 bin      bin        17440 Jul 15  1997 /usr/bin/ls 
[root@ocs root]#  chmod 0555 /usr/bin/ls 
[root@ocs root]#  ls -l /usr/bin/ls 
-r-xr-xr-x   1 bin      bin        17440 Jul 15  1997 /usr/bin/ls 

 
Notice the “s” character located in the owner’s permissions.  This indicates that 
the setuid permissions is set.  If the “s” is lower case, it means both setuid and 
the execute permission is set.  If the “S” is upper case, it means only setuid (not 
execute) is set. 



  Notes: 

Linux Speical Permissions ©2013 One Course Source, Inc Page 7 
 www.OneCourseSource.com 
 

Be careful of setuid 
 
setuid files present a security risk on the system (especially files that are owned 
by root).  Be careful of when you create setuid files and make sure you are 
aware of what setuid files are on your system 
 
You can use the find command to find which programs on the system have the 
setuid permission set: 
 

[root@ocs root]#  find / -perm -4000 –ls 
{output omitted} 



  Notes: 

Linux Speical Permissions ©2013 One Course Source, Inc Page 8 
 www.OneCourseSource.com 
 

1.2  Special Permission: setgid 
 
There are actually two forms of setgid permissions: setgid on a file and setgid on 
a directory. 
 
setgid on a file 
 
This essentially means the same thing as setuid on a file.  When someone runs 
the command, instead of accessing files as the group the person is a part of, the 
system pretends the person is a member of the group the file is owned by. 



  Notes: 

Linux Speical Permissions ©2013 One Course Source, Inc Page 9 
 www.OneCourseSource.com 
 

setgid on a directory 
 
Consider the following situation: Four people from different groups in a company 
are working on a common project.  The four users and the groups to which they 
belong are: 
 
User  Groups 
bob  staff 
steve  accounting, staff 
sue  payroll 
nick  admin 
 
The company policy is for all users to have the umask 027.   
 
All users store the files for this project in a directory called 
/home/beta_prog_a 



  Notes: 

Linux Speical Permissions ©2013 One Course Source, Inc Page 10 
 www.OneCourseSource.com 
 

After a few of the users store some files in this directory, a listing of that 
directory looks like this: 
 

[root@ocs root]#  ls -l /home/beta_prog_a 
total 6 
-rw-r----- 1 bob staff 124 Mar  4  1998 1999_data 
-rw-r-----   1 steve accounting  575 Jul 15  1997 tax_table 
-rw-r----- 1 sue payroll 560 Jul 15  1997 salaries 
-rw-r----- 1 nick admin 560 Jul 15  1997 hr_data 

 
Based upon the above information, you will note that there is problem here.  
While each user can store files in the /home/beta_prog_a directory, no user 
can see another user’s work. 



  Notes: 

Linux Speical Permissions ©2013 One Course Source, Inc Page 11 
 www.OneCourseSource.com 
 

To avoid this problem we can take four steps: 
 
1. Create a new group (called beta in this case). 
2. Place all user in the new group . 
3. Give group ownership of the directory to the new group. 
4. Set the setgid permission on the directory. 
 
After taking these steps, any new file in the directory home/beta_prog_a will 

be group owned by the new group.  Example: 
 

[root@ocs root]#  mkdir /home/beta_prog_a 
[root@ocs root]#  groupadd -g 133 beta 
[root@ocs root]#  vi /etc/group    
{add each user to the new group with the usermod command} 
[root@ocs root]#  chgrp beta /home/beta_prog_a 
[root@ocs root]#  chmod g+s /home/beta_prog_a 
{no output for any command} 

 
Notice the “s” character located in the group’s permissions.  This indicates that 
the setgid permissions is set.  If the “s” is lower case, it means both setgid and 
the execute permission is set.  If the “S” is upper case, it means only setgid (not 
execute) is set. 



  Notes: 

Linux Speical Permissions ©2013 One Course Source, Inc Page 12 
 www.OneCourseSource.com 
 

Be careful of setgid 
 
setgid files present a security risk on the system (especially files that are owned 
by system groups).  Be careful of when you create setgid files and make sure 
you are aware of what setguid files are on your system. 
 
You can use the find command to find which programs on the system have the 
setgid permission set: 
 

[root@ocs root]#  find / -perm -2000 –ls 
{output omitted} 



  Notes: 

Linux Speical Permissions ©2013 One Course Source, Inc Page 13 
 www.OneCourseSource.com 
 

1.3  Special Permission: sticky bit 
 
Consider the following situation: You have a directory in which users can post 
announcements called /export/home/pub.  In order for all users to be able to 
post (create files in) this directory, you need to give the permissions 777.   
 
Unfortunately, these permissions also allow any user to remove any file from the 
pub directory.  What if a user decides to run the command rm -r * on that 
directory? 
 
The sticky bit permission give you the ability to allow anyone to add to a 
directory, but limits who can delete files in that directory.  The only users who 
can delete files in a sticky bit directory are: 
 
1. root 
2. The owner of the directory 
3. The owner of the file 



  Notes: 

Linux Speical Permissions ©2013 One Course Source, Inc Page 14 
 www.OneCourseSource.com 
 

To set sticky bit 
 
To set the sticky bit permission, use the chmod command: 
 

[root@ocs root]# chmod 1777 /export/home/pub 
[root@ocs root]# ls -ld /export/home/pub 
drwxrwxrwt   2 root     other        512 Feb 18 18:11 /export/home/pub 

 
Notice the “t” character in the place where the “x” should be for others.  This “t” 
tell you that the sticky bit has been set on this directory. 



  Notes: 

Linux Speical Permissions ©2013 One Course Source, Inc Page 15 
 www.OneCourseSource.com 
 

1.4 Access Control Lists 
 
Access Control Lists Essentials 
 
Consider the following situation: There are 500 user accounts on a system.  The 
group “payroll” has 15 users assigned to it.  Bob, who is a member of the payroll 
group, creates the file “salaries” and gives it the permissions 660. 
 
In this scenario, Bob and all the members of the payroll group have the ability to 
read and modify the salaries file.  Nobody else can do anything with this file.   
 
The CEO of the company, who is not in the payroll group, requests to have read 
access to this file.  There are two methods of giving the CEO access to the file: 
 
1. Add the CEO to the payroll group. 
2. Give read permission to everyone. 
 
Obviously, the second method is a very bad idea.  The first method might be ok; 
however, there are a couple of disadvantages: #1.  Each user can only be 
assigned to 16 groups and #2.  The CEO now has access to any file that has 
group ownership.    
 
The ext3 filesystem includes a feature called Access Control Lists.  ACL’s allow 
you to specify permissions for individual users or groups. 



  Notes: 

Linux Speical Permissions ©2013 One Course Source, Inc Page 16 
 www.OneCourseSource.com 
 

Enable ACLs 
 
While ext3 filesystems are capable of allowing ACLs, they don't have this feature 
enabled by default.  To enable ACLs, you need to have the filesystem mounted 
with the "acl" option. 
 
The mounting process will be discussed in greater detail in a future Unit.  For 
now use the following command to enable ACLs on a filesystem: 
 

mount -o remount,acl /mount_point 



  Notes: 

Linux Speical Permissions ©2013 One Course Source, Inc Page 17 
 www.OneCourseSource.com 
 

Setting ACL’s 
 
To create a new ACL for a file, use the setfacl command with the -m option.    
The syntax of the setfacl command when using the -m option is: 
 

setfacl --set user::perm,group::perm,other:perm,mask:perm,[user:UID:perm],[group:GID:perm] filename 

 
Note: “user”, “group”, “other” and “mask” can be abbreviated to “u”, “g”, “o” and 
“m”. 
 
The “perm” can be give either in octal format or symbolic: 
 
Symbolic Permission Octal Permission 
rwx    7 
rw-    6 
r-x    5 
r--    4 
-wx    3 
-w-    2 
--x    1 
---    0 



  Notes: 

Linux Speical Permissions ©2013 One Course Source, Inc Page 18 
 www.OneCourseSource.com 
 

To give the sample.txt file the permissions of… 
 
Owner: rwx 
Group:  r-x 
Others: r-- 
Mask: r-x 
bob r-x 
games r-x 
 
....use the command: 
 

[root@ocs boot]# setfacl -m u::7,g::5,o:4,m:5,u:bob:5,g:games:5 sample.txt 

 
…or the command: 
 

[root@ocs boot]# setfacl -m u::rwx,g::r-x,o:r--,m:r-x,u:bob:r-x,g:games:r-x sample.txt 

 
Note: You can also specify either a user’s name or UID number. 
 
The Mask setting 
 
The mask setting enforces a “maximum” permission for all users and groups 
(except the owner) on the file.  Therefore, in the previous example, bob’s 
effective permissions are just read (not read/write).  We will this setting in more 
detail after looking at how to display ACLs. 



  Notes: 

Linux Speical Permissions ©2013 One Course Source, Inc Page 19 
 www.OneCourseSource.com 
 

Displaying ACLs 
 
When a file has an ACL, a “+” character will be displayed next to the 
permissions of the file when you run the ls -l command: 
 

[root@ocs boot]# ls -l sample.txt 
-rwxr-xr--+   1 root     root            0 Jan 22 09:33 sample.txt 

 
To display ACLs, use the command getfacl: 
 

[root@ocs boot]# getfacl sample.txt 
# file: sample.txt 
# owner: root 
# group: root 
user::rwx 
user:bob:r-x 
group::r-x 
group:games:r-x 
mask::r-x 
other::r-- 



  Notes: 

Linux Speical Permissions ©2013 One Course Source, Inc Page 20 
 www.OneCourseSource.com 
 

More details regarding the mask setting 
 
The mask setting is intended to provide you a method of avoiding accidentally 
providing permissions to a file that give undesired access to the file.   
 
Unfortunately, this often means that the permissions that you specify are not the 
permissions that you end up getting: 
 

[root@ocs boot]# setfacl -m m:4 sample.txt 
[root@ocs boot]# getfacl sample.txt 
# file: sample.txt 
# owner: root 
# group: root 
user::rwx 
user:bo:r-x                  #effective:r-- 
group::r-x                   #effective:r-- 
group:games:r-x      #effective:r-- 
mask::r-- 
other::r-- 

 
In this example, the user bob only gets read permission on the file even though 
our original setfacl command requested both read and write permissions. 
 
Note: If you change a user or group ACL, the mask setting may be changed as 
well to allow the specified permissions.   



  Notes: 

Linux Speical Permissions ©2013 One Course Source, Inc Page 21 
 www.OneCourseSource.com 
 

Removing ACLs 
 
To remove an ACL, use the -x option: 
 

[root@ocs boot]# setfacl -x u:bo sample.txt 
[root@ocs boot]# ls -l sample.txt 
-rwxr-xr--    1 root     root            0 Jan 22 09:33 sample.txt 

 
Note:  If the ACL permission is the last one in the ACL table, the ACL table will 
be removed and the “+” character next to the permissions will no longer be 
displayed. 
 
Other useful setfacl options 
 
Option Description 
-b  Remove all ACLs (owner, group & other permissions still apply) 
-R  Apply ACLs to directory and all contents (recursive) 



  Notes: 

Linux Speical Permissions ©2013 One Course Source, Inc Page 22 
 www.OneCourseSource.com 
 

Default ACLs 
 

If you apply an ACL to a directory, that ACL will be applied automatically to all 
new files and subdirectories created within that directory.  When you initially 
create an ACL for a directory, you must specify an ACL permission for the user 
owner, group owner, others and mask.  You also need to specify that these are 
default ACLs by placing a “d” character in front of each permission set: 
 

[root@ocs boot]# mkdir acl_dir 
[root@ocs boot]# setfacl -m d:u::7,d:g::7,d:o:5,d:m:7,d:u:bob:7 acl_dir 
 

Default permission sets show up in a different location than regular ACL entries 
when you use the getfacl command: 
 

[root@ocs boot]# getfacl acl_dir 
# file: acl_dir 
# owner: root 
# group: root 
user::rwx 
group::r-x 
other::r-x 
default:user::rwx 
default:user:bob:rwx 
default:group::rwx 
default:mask::rwx 
default:other::r-x 



  Notes: 

Linux Speical Permissions ©2013 One Course Source, Inc Page 23 
 www.OneCourseSource.com 
 

Creating files in a ACL directory 
 
When you create a new file in a directory that has a default ACL set on it, the 
directory’s ACL is applied to the new file after it has been “filtered” by the umask 
setting: 
 

[root@ocs boot]# cd acl_dir 
[root@ocs acl_dir]# touch acl.txt 
[root@ocs acl_dir]# ls -l acl.txt 
-rw-rw-r--+   1 root     root            0 Jan 22 09:53 acl.txt 
[root@ocs acl_dir]# getfacl acl.txt 
# file: acl.txt 
# owner: root 
# group: root 
user::rw- 
user:bo:rwx                     #effective:rw- 
group::rwx                      #effective:rw- 
mask::rw- 
other::r-- 

 
If the permissions specified by the ACL are higher than the umask setting then 
the umask setting “wins out”. 



  Notes: 

Linux Speical Permissions ©2013 One Course Source, Inc Page 24 
 www.OneCourseSource.com 
 

Creating a subdirectory in an ACL directory 
 
When you create a directory in an ACL directory, the umask setting is not used.  
The ACL permissions, including the default permissions, are passed from the 
parent directory to the subdirectory: 
 

[root@ocs acl_dir]# mkdir new_acl 
[root@ocs acl_dir]# getfacl new_acl 
# file: new_acl 
# owner: root 
# group: root 
user::rwx 
user:bo:rwx 
group::rwx 
mask::rwx 
other::r-x 
default:user::rwx 
default:user:bo:rwx 
default:group::rwx 
default:mask::rwx 
default:other::r-x 



  Notes: 

Linux Speical Permissions ©2013 One Course Source, Inc Page 25 
 www.OneCourseSource.com 
 

1.5 Summary of Commands and Files 
 
Command Description 

chmod Changes file and directory permissions 
getfacl Displays ACL permissions of files and directories 
setfacl Sets ACL permissions on files and directories 
 
File Description 

None  
 
 



  Notes: 

Linux Speical Permissions ©2013 One Course Source, Inc Page 26 
 www.OneCourseSource.com 
 

1.6 Additional Resources 
 
Books 
 
None 
 
Web sites 
 
http://www.tldp.org/HOWTO/Security-HOWTO/index.html - Chapter #5: Files and Filesystem Security 
 
Man pages 
 
chmod 
getfacl 
setfacl 
 
 
 
 
 
 
 
 
 
 



  

Appendix - Basic File Security ©2013 One Course Source Page 27 
 

 

 Appendix 
Basic File Security 

 

 
Unit topics:  Page  

2.1..................................................................................................... Basic Linux Permissions 28 
2.2................................................................................................ Setting Default Permissions 34 

 
 
 



   Notes: 

Appendix - Basic File Security ©2013 One Course Source Page 28 
 

2.1  Basic Linux Permissions 
 
Permissions are Linux's method of protecting files and directories.  Every file or 
directory is owned by a user and assigned to a group. The owner of a file has 
the right to set permissions in order to protect the file from being accessed, 
modified or destroyed.   
 
Determining permissions 
 
To determine the permissions of a file, use the ls -l command. The first 
character of the output of the ls -l command specifies the file type.  The next 
nine characters represent the permissions set on the file. There are three types 
of permissions: r (read), w (write), and x (execute).  These permissions have 
different meanings for files and directories.  
 
First three permissions are for the user owner, second three are for people in 
the group, and last three are for everyone else (others). 
 
-rw-r--r-- 1 steve staff 512 Oct 11 10:43 tmp 
 
 
permissions user owner group  
 
Therefore, in the preceding example, the owner of the file (steve) has read and 
write permissions, the members of the group (staff) have read permission and 
everyone else has read permission. 



   Notes: 

Appendix - Basic File Security ©2013 One Course Source Page 29 
 

Group accounts 
 
Groups were invented to provide more flexibility when issuing permissions.  
Every user is a member of at least one group (a primary group) and may be a 
member of additional (secondary) groups.  To see the groups you belong to, type 
the groups command. 
 
File permissions vs. Directory permissions 
 
Permissions have different meaning on files and directories.  The following chart 
illustrates the differences: 
 
Permission Symbol Meaning for Files Meaning for Directories 
Read r Can view or copy file Can list with ls 

Write w Can modify file Can add or delete files in the 
directory (if execute permission 
is also set) 

Execute x Can run file like a 
program 

Can cd to that directory.  Can 
also use that directory in a path. 

 



   Notes: 

Appendix - Basic File Security ©2013 One Course Source Page 30 
 

Changing Permissions 
 
Only the person who owns the file (and the root user) can change the file's 
permissions. 
 
There are two methods of changing the permissions on a file: symbolic and octal.  
The chmod command is used in both cases. 
 
Symbolic method 
 
The symbolic method is useful for changing just one or two permissions.  
Following the chmod command, you specify three items: whose permission you 
wish to change, whether you want to add or remove the permission, and the 
permission itself.  The following chart illustrates the possibilities: 
 
Who Operand: Permission: 
u (user/owner) - (remove) r (read) 
g (group) + (add) w(write) 
o (other)  x (execute) 
a (all three) 



   Notes: 

Appendix - Basic File Security ©2013 One Course Source Page 31 
 

For example, the following removes read permission for the group for the file 
myprofile: 

 

[student@ocs1 student]#  ls -l 
-rw-r--r-- 1 steve staff 512 Oct 11 10:43 myprofile 
[student@ocs1 student]#  chmod g-r myprofile 
[student@ocs1 student]#  ls -l 
-rw----r-- 1 steve staff 512 Oct 11 10:43 myprofile 

 
You can specify multiple permissions to change; the following example will add 
execute permission for the user owner and remove read permission for others for 
the file myprofile: 

 

[student@ocs1 student]#  ls -l 
-rw----r-- 1 steve staff 512 Oct 11 10:43 myprofile 
[student@ocs1 student]#  chmod u+x,o-r myprofile 
[student@ocs1 student]#  ls -l 
-rwx------ 1 steve staff 512 Oct 11 10:43 myprofile 



   Notes: 

Appendix - Basic File Security ©2013 One Course Source Page 32 
 

Octal Method 
 

The octal method is useful when you have to change many permissions on a file.  
It is based on the octal numbering system: 
 

4=read       
2=write 
1=execute 

 

By using a combination of numbers from 0 to 7, any possible combination of 
read, write and execute permissions can be specified.  The following chart 
illustrates all of the possible combinations: 
 

Value Meaning  
7 r w x   
6 r w -   
5 r - x   
4 r - -   
3 - w x 
2 - w - 
1 - - x 
0 - - - 
 
When the octal method is used to change permissions, all nine permissions must 
be specified.  Because of this, the symbolic method is generally easier for 
changing a few permissions while the octal method is better for changes that are 
more drastic. 



   Notes: 

Appendix - Basic File Security ©2013 One Course Source Page 33 
 

To change the permission for the myprofile file to the permissions rwxrw-r-- use 
the following command: 
 

[student@ocs1 student]#  cd 
[student@ocs1 student]#  ls -l 
-rw----r-- 1 steve staff 512 Oct 11 10:43 myprofile 
[student@ocs1 student]#  chmod 764 myprofile 
[student@ocs1 student]#  ls -l 
- rwxrw-r-- 1 steve staff 512 Oct 11 10:43 myprofile 



   Notes: 

Appendix - Basic File Security ©2013 One Course Source Page 34 
 

2.2  Setting Default Permissions 
 

When you create a file or directory, predefined permission are set on that file or 
directory.  The current default permissions are: 
 

 files   rw-rw-rw- 
 Directories rwxrwxrwx 
 

To change the default permissions, you must change the umask setting. 
 

The following text and chart can be used to determine an umask entry:  
1.  Know the MAXimum possible permissions for files and directories. 
2.  Determine what you want your permissions to be when you create either a 

new file or directory.  You will need to pick one (either file or directory) and 
understand that the umask command affects both. 

3.  Determine what permissions of the MAXimum permissions need to be taken 
out (MASKed out). 

4.  Compute the values (in octal notation) of what needs to be MASKed out for 
the owner, group and other.  The resulting three numbers is what you will use 
to set your umask. 

 
Step  File Directory 

1 MAX rw-  rw-  rw- rwx  rwx  rwx 
3 MASK ---   -m-  mmm ---   -m-  mmm 
4 umask=027 0      2       7 0      2       7 

2 desire rw-  r--  --- rwx  r-x  --- 
 



   Notes: 

Appendix - Basic File Security ©2013 One Course Source Page 35 
 

The umask command displays and changes default permissions: 
 

[student@ocs1 student]#  umask 
027 
[student@ocs1 student]#  umask 026 
026 

 
After setting this umask, if you were to log out (or open a new shell) you would 
lose the new umask setting.  In order for this new umask setting to be a 
permanently changed, you must place the umask command into your 
initialization file (A later Unit will cover initialization files). 
 


