
Automating CloudStack with Puppet

Puppet Camp Silicon Valley
David Nalley

david@gnsa.us
@ke4qqq

#whoami

 Recovering sysadmin
 Committer on Apache CloudStack
 Fedora Project Contributor
 Fan of “The Phoenix Project”

The plan

 Overview of Apache CloudStack
 Using puppet to manage your CloudStack-based VMs
 Using puppet to manage your VM deployment.

What is CloudStack?

 Open source IaaS platform
 ASLv2 licensed
 History tl;dr
� began development in 2008
� production deployments by 2009
� open sourced in 2010
� moved to ASF in 2012

Design goals

 Integrate with untold number of yet to be identified hardware.
 Provide an API platform on which to run cloud operations.
 Orchestrate hardware resources that may be protected by a

firewall.
 Horizontally scalable management layer.
 Enable the best data paths to accomplish cloud operations.
 A beautiful and functional UI

Architectural Overview

 Division of physical resources
 Storage
 Borg drones VMs
 Networking
 Management and orchestration

Physical hosts

 Hypervisors
� KVM
� Xenserver
� XCP
� VMware

 Baremetal (with IPMI)

Clusters

 Collections of hosts
 Typically 1-15 hosts in a cluster
 Homogenity
� Network
� Hypervisor
� CPU type

Clusters

 Hosts share storage
 Fault domain for individual VM availability
 Lowest level for allocation decisions

Pods

 Collection of clusters
 Typically a rack or row of racks
 Can contain multiple types of hypervisors
 Largely just an arbitrary division

Zones

 Typically a datacenter
 Single networking model within a zone
 Visible to the end user

Storage

 CloudStack doesn't really provide storage, but does consume
and orchestrate it.

Local Storage

 Typically faster than SAN/NAS
 Failure of a host means loss of a VM
 Can be far more scalable than trying to scale a large traditional

storage platform

Primary (shared) storage

 Shared at the cluster level
 Where running disk images live
 All hosts in the cluster can write to the resource
 Most commonly NFS and iSCSI, but essentially anything the

hypervisor can mount
 'New' storage types like Ceph RBD

Secondary Storage

 Primary storage is focused on running VMs, Secondary
storage is focused on immutable items.

� Snapshots
� Disk images
� ISOs

 Zone wide storage resource
 Can employ object storage

Borg drone VMs

Console Proxy VM

 AJAX-based VNC console access
 Allows CloudStack to deal with auth{n,z} for console access.
 Abstracts away hypervisor access
 Not a replacement for ssh/RDP but no more painful than

DRAC/iLO
 Stateless; horizontally scalable

Secondary Storage VM

 Secondary Storage is the resource, the SSVM that handles the following operations:

� Copying snapshots from primary to secondary storage

� Copying disk images from secondary to primary storage

� Making all items stored in secondary storage downloadable and a place to transfer
items into secondary storage

� Aging the snapshots according to policy

Networking Model: VLANs

 Traditional L2 isolation
 CloudStack given a block of VLANs and allocates them on

demand
 Each account gets allocated at least one VLAN.
 Inherent limitations of VLANs

Networking model: L3 Isolation

 L3 isolation; aka Security Groups
 Pushes ACLs down to each hypervisor host
 Far more scalable, decentralized (more Borg)
 Filter at the bridge device

Security Groups

Security Groups

Network Model: SDN

 OVS (GRE overlay tunnels)
 Nicira NVP
 Others rapidly appearing:
� BigSwitch
� Midokura

Virtual networking hardware

 DHCP
 VLAN allocation
 Firewall
 NAT/Port forwarding
 Routing
 VPN
 Load Balancing

Virtual networking hardware

 Cisco Nexus 1000v
 NetScaler VPX
 F5 Big IP virtual edition

Physical networking hardware

 Juniper SRX
 F5 BigIP LB
 NetScaler

Management Server

 Management server is stateless, horizontally scalable platform
for orchestrating all of the resources.

 Provides isolation in what is assumed to be a multi-tenant
environment

UI

API

 EC2/S3 translation layer
 CloudStack native API:
� http://incubator.apache.org/cloudstack/docs/api

More info

 http://incubator.apache.org/cloudstack
 #cloudstack on irc.freenode.net
 cloudstack-users-subscribe@incubator.apache.org

Using puppet to manage VMs

 Being able to deploy 500 VMs in 10 minutes means you need
some method to classify and apply configuration management.

 Most of the work for this awesomeness was done by Jason
Hancock (@jsnby)

A couple of upfront goals

 Minimize the number of templates
 Have all instances receive config via Puppet
 Zero manual intervention

Make one API call to launch a VM, and get out of the way and
watch the automation do wonderful things.

A word about auto-signing

 You can use auto-signing.
 Automatically signs any cert from a given domain
 Potential security issues if folks can connect to your

puppetmaster
 You can pre-seed templates with a signed key - but there are

gotchas

Run puppet ASAP

 Turn off splay - you want to minimize the time that the box
remains unconfigured.

 Make sure puppet is configured to start on boot (enable the
service, not cron)

Classifying nodes - options

 {site,node}.pp
 hostname-based regex
 PE/Dashboard
 ENC
 facts
 $other_things

facts

What to base a fact on...

userdata an optional binary data that can be sent to the virtual
machine upon a successful deployment. This binary data
must be base64 encoded before adding it to the request.
Currently only HTTP GET is supported. Using HTTP GET
(via querystring), you can send up to 2KB of data after
base64 encoding.

http://incubator.apache.org/cloudstack/docs/api/apidocs-4.0.0/user/deployVirtualMachine.html

Sample userdata

role=webserver
location=datacenter1
environment=production

Custom fact for userdata

 http://s.apache.org/acs_userdata

Implementing ::role in puppet

Everyone is a default node.
No need to add nodes to site.pp or use an ENC.

Sample, skeletonized, site.pp

import 'base'

node default {
 include base
}

Sample, skeletonized, base.pp
class base.pp {
 # Includes that apply to all machines

 case $::role {
 'somerole': {
 include somemodule
 }
 'otherrole': {
 include someothermodule
 }

This is only the beginning...

 Setting environment, purging terminated instances, and more.
 Check out Jason's blog: http://geek.jasonhancock.com

Making puppet deploy your infrastructure in
CloudStack

 Most of the real work that follows was done by Dan Bode.

deployVirtualMachine API

 CloudStack provides an API for provisioning machines.

Puppet...

 converts freshly provisioned VMs into functional machines
ready to do work.

When combined....

you can start from nothing, deploy the machines and wind up with
a completely automated deployment system.

CloudStack resources in puppet

https://github.com/bodepd/cloudstack_resources

Still a bit raw....potentially unstable, use with caution, file bug

reports and patches.

Defining application stacks

class my_app_stack {
 cloudstack_instance {'web1':
 ensure => present,
 group => 'role=web',
 }
 cloudstack_instance {'db1':
 ensure => present,
 group => 'role=db',
 }
}

Setting defaults
Cloudstack_instance {
 image => 'Fedora18_x86_64',
 flavor => 'm1.medium',
 zone => 'SanJose',
 network => 'default own',
 keypair => 'my_secret_keypair',
}
cloudstack_instance { 'web1':
 ensure => $::ensure,
 group => 'role=web',

Now machines and their configuration are deployable all from
puppet.

(This also exists for GCE and OpenNebula.)

