
1

Maxim Patlasov
<mpatlasov@parallels.com>

Containers in a File

mailto:mpatlasov@parallels.com


2

Agenda

•Containers overview
•Current way of keeping container files and its problems
•Basics of container-in-a-file approach
•Limitations of existing facilities
•Solution
•Benefits
•Plans for future



3

Virtualization: VM-style vs. containers

CT 1

Hardware Hardware

Host OSHost OS / Hypervisor

OS Virtualization LayerVirtual Machine Monitor

Virtual Hardware Virtual Hardware

Guest OS Guest OS

VM 1 VM 2
CT 2

Containers: 
•OpenVZ / Parallels Containers
•Solaris containers/Zones
•FreeBSD jails

VMMs: 
•KVM / Qemu
•VMware
•Parallels Hypervisor



4

Containers Virtualization

Each container has its own:

•Files
•Process tree
•Network
•Devices
•IPC objects



5

Containers: file system view

Natural approach: each container chroot-s to a per-container sub-tree of 
some system-wide host file system.

CT 1 CT 2

Block device

Host file system

/

1 2

CTs

chroot chroot



6

Problems

•File system journal is a bottleneck:

1. CT1 performs a lot of operations leading to metadata updates (e.g. 
truncates). Consequently, the journal is getting full.

2. CT2 issuing a single I/O operation blocks until journal checkpoint is 
completed. Up to 15 seconds in some tests! 

Host file system100% full

Journal

Lots of random writes



7

Problems (cont.)

•Lots of small-size files I/O on any CT operation (backup, clone)
•Sub-tree disk quota support is absent in mainstream kernel

•Hard to manage:
•No per-container snapshots, live backup is problematic
•Live migration – rsync unreliable, changed inode numbers

•File system type and its properties are fixed for all containers
•Need to limit number of inodes per container



8

Container in a file

Basic idea: assign virtual block device to container, keep container’ file-
system on top of virtual block device.

CT 1

Per-container
file systems

Host file system

Per-container
virtual block devices

virtual block device

image-file image-file

virtual block device

/ /

CT 2



9

LVM limitations

•Not flexible enough – works only on top of block device
•Hard to manage (e.g. how to migrate huge volume?)
•No dynamic allocation (--virtualsize 16T --size 16M)
•Management is not as convenient as for files

Block device

Per-container
file systems

Per-container
logical volumes

CT 1

/ /

CT 2

Logical volume Logical volume



10

Ordinary loop device limitations

•VFS operations leads to double page-caching
•No dynamic allocation (only “plain” format is supported)
•No helps to backup/migrate containers
•No snapshot functionality

Per-container
file systems

Per-container
loop devices

CT 1

/ /

CT 2

/dev/loop1 /dev/loop2

image-file1 image-file2 Host file system



11

Design of new loop device (ploop)

 

main ploop module

Container file system

kernel block layer

mount

physical medium

image file

Maps virtual
block number
to image
block number

Maps file offset
to physical sector I/O module

DIO

VFS

format module
plain

QCOW

ploop block device
v-blocks

i-blocks

expandable

NFS



12

Stacked image configuration 

Ploop snapshots are represented by image files. They are stuffed in ploop 
device in stacked manner and obey the following rules:
•Only top image is opened in RW mode (others – RO)
•Every mapping bears info about ‘level’
•READ leads to access to an image of proper ‘level’
•WRITE may lead to transferring proper block to top image

Snapshot
image1
(RW)

image
(RO)

level 1

level 0

top

WRITE

Copy (if any)

complete

READ

complete

READ

complete



13

Backup via snapshot

Operations involved:
•Create snapshot
•Backup base image
•Merge

CT

image

ploop
bdev

snapshot CT

ploop
bdev

image

(RW)

(RO)

copy

image.tmp

(RW)

merge CT

ploop
bdev

image

(RW)

image.tmp

merge

Key features:
•On-line
•consistent



14

Migrate via write-tracker

Operations involved:
•Turn write-tracker on
•Iterative copy
•Freeze container
•Copy the rest

time

track on, copy all

check tracker, copy modified

check tracker, copy the rest

image a copy of image

< freeze container>

Key features:
•On-line
•I/O efficient



15

Problems solved

•File system journal is not bottleneck anymore

1. CT1 performs a lot of operations leading to metadata updates (e.g. 
truncates). Consequently, the journal is getting full.

2. CT2 has its own file system. So, it’s not directly affected by CT1. 

CT1 file system100% full

Journal

Lots of random writes

CT2 file system



16

Problems solved (cont.)

•Large-size image files I/O instead of lots of small-size files I/O on 
management operations
•Disk quota can be implemented based on virtual device sizes. No need 
for sub-tree quotas
•Live backup is easy and consistent
•Live migration is reliable and efficient
•Different containers may use file systems of different types and properties
•No need to limit “number-of-inodes-per-container”



17

Additional benefits

•Efficient container creation

•Snapshot/merge feature

•Can support QCOW2 and other image formats
 
•Can support arbitrary storage types

•Can help KVM to keep all disk I/O in-kernel



18

Plans

•Implement I/O module on top of vfs ops

•Add support of QCOW2 image format

•Optimizations:
•discard/TRIM events support
•online images defragmentation
•support sparse files

•Integration into mainline kernel
 



19

Questions


	Maxim Patlasov
	Agenda
	Virtualization: VM-style vs. containers
	Containers Virtualization
	Containers: file system view
	Problems
	Problems (cont.)
	Container in a file
	LVM limitations
	Ordinary loop device limitations
	Design of new loop device (ploop)
	Stacked image configuration 
	Backup via snapshot
	Migrate via write-tracker
	Problems solved
	Problems solved (cont.)
	Additional benefits
	Plans
	Slide 19

