Wireless Networking
For Beginners

Dennis Rex

SCALE 3X - 2005
Agenda

- Wireless Choices – 802.11A, B, G
- Devices - USB, PCI, PCMCIA, “bridges”
- Wireless chipsets - the good, the bad, the ugly
- Finding and installing the right driver
- Wireless settings and utilities
- Basic security tips
- Resources and links
- Q & A
Wireless Modes

- **802.11B & G**
 - Same 2.4GHz band
 - 11mbps and 54mbps speeds
 - Best range (B mode)

- **802.11A**
 - 5.2GHz band
 - Shorter range, less crowded, more common in business settings
Device Types

• USB
• PCMCIA/Cardbus
• PCI
• Mini-PCI
• Wireless Ethernet adapters
USB

- Flexible to position
- Easy to install
- Hotplug capable
- Inexpensive
- CPU consumption
- Speed
- No External antenna
PCMCIA/Cardbus

- Nearly universal for laptops
- Good driver support
- Hotplug capable
- Many with external antenna connections
- High-power options
- Can be fragile
PCI

• Good desktop choice
• Most have detachable antennae
• Location can be a problem
• IRQ conflicts, especially on older boxes
Mini-PCI

• Notebook-only
• Great range with internal case antenna
• No external antenna options
• No hotswap
• Difficult to upgrade
Wireless Ethernet Adapters

- No drivers needed
- Plugs into Ethernet port
- Great position flexibility
- Usually routeable
- Limited external antenna options
- Relatively expensive: 2x-3x PCMCIA
Wireless Chipsets

• Good: Native drivers, simple setup
 – ORiNOCO (classic), Cisco, Prism (2, 2.5, 3),
• OK: Manufacturer or open source drivers
 – Intel Centrino, Atheros, ACX100
• Usable with a wrapper:
 – Broadcom, RealTek
• Good luck:
 – ORiNOCO World Gold (Hermes II), RaLink RT2400/2500 (driver is available)
Wireless Drivers (a short list)

- orinoco_cs: Works with most ORiNOCO and Prism cards
- wlan-ng: Prism and Prism USB devices
- Prism54: 802.11G Prism cards
- HostAP: Prism 2-3
- MadWiFi: Atheros
- Ndiswrapper: Broadcom, RealTek via Windows drivers
- Linuxant: A commercial wrapper
Getting Connected
Settings & Utilities

• Wireless success is a two-step process:
 – Finding and associating with an access point
 – Establishing a network connection

• Managing the wireless connection can be by GUI or command line
 – Network name, mode, channel, rate, key settings

• Network interface settings and status
 – GUI, CLI or distro scripts
Command line options

• Wireless Tools – iwconfig
 - Used for setting wireless parameters, scanning for available networks or displaying status.
 - Usually the data source for UI's.
 - Nearly universal across distros and configurations.
 • Most drivers use wireless tools
 - Settings are not persistent
 • Frequently-used values can be stored in distro-specific script files.
 For FC3: /etc/sysconfig/network-scripts/ifcfg-eth0
IWCONFIG(8) Linux Programmer's Manual IWCONFIG(8)

NAME
iwconfig - configure a wireless network interface

SYNOPSIS
iwconfig [interface]
iwconfig interface [essid X] [mwid N] [freq F] [channel C]
[sens S] [mode M] [ap A] [nick NN]
[rate R] [rts RT] [frag FT] [txpower T]
[enc E] [key K] [power P] [retry R]
[commit]
iwconfig --help
iwconfig --version

DESCRIPTION
Iwconfig is similar to ifconfig(8), but is dedicated to the wireless interfaces. It is used to set the parameters of the network interface which are specific to the wireless operation (for example: the frequency). Iwconfig may also be used to display those parameters, and the wireless statistics (extracted from /proc/net/wireless).
GUI Wireless Options

- **KWiFiManager**
 - An ORiNOCO utility look-alike
 - Originally a stand-alone, now integrated into KDE
 - Allows 4 profiles to be stored

- **Gnome wireless applet**
 - Signal strength

- **XFCE4 wavelan plugin**
 - Signal strength, SSID
Interface tools

- **CLI** – ifconfig, route, dhclient or dhcpcd
 - Activate and configure the interface
 - Obtain or assign an IP address and gateway
 - Usually scripted. Again, distro-specific locations

- **UIs** – NEAT, NetDrake, YaST, Netconfig
 - Almost universally, these tools simply overwrite a configuration file. Sometimes, knowing the location and syntax of the files makes changes quicker.
Wireless Security

• Worthy of its own topic. We'll touch on the basics

• Two primary wireless security objectives:
 – Control access to the wireless LAN
 – Protect the data
Wireless Security - Encryption

- WEP – Wired Equivalent Privacy
 - Encrypts data packets only
 - Uses a 10 or 26 digit hex key on each client matching the access point
 - Several published vulnerabilities
 - Attack tools are easily obtained
Wireless Security - Access

- ESSID Broadcast Disable - Security through obscurity
 - Extended Service Set Identifier, the “network name”
 - Needed for clients to associate
 - Default setting is to beacon – announce the name to prospective client devices
 - Access point is still visible
 - SSID is broadcast in response to a probe
 - Broadcast disable can cause connection problems
Wireless Security - Access

• MAC address filtering – access control
 – Media access control address. A unique hexadecimal address assigned by the manufacturer to each network device. ex: A0:12:3E:00:00
 – Routers can be set to deny or accept specific addresses
Wireless Security - Access

- MAC addresses are easily cloned, or “spoofed.”
- MAC addresses are sent in every 802.11 frame
- MAC addresses are never encrypted
IEEE 802.11

Type/Subtype: Probe Response (5)

Frame Control: 0x0850 (Normal)

Version: 0
Type: Management frame (0)
Subtype: 5

Flags: 0x8

DS status: Not leaving DS or network is operating in AD-HOC mode (To DS: 0 From DS: 0 (0x00)

.... 0.. = More Fragments: This is the last fragment
.... 1... = Retry: Frame is being retransmitted
.... 0.... = PWR MGT: STA will stay up
.... 0... = More Data: No data buffered
.... 0.... = WEP flag: WEP is disabled
.... 0.... = Order flag: Not strictly ordered

Duration: 314
Destination address: 00:06:25:12:7e:b0 (LinksysG_12:7e:b0)
Source address: 00:0c:41:83:b7:8a (LinksysG_83:b7:8a)

BSS Id: 00:0c:41:83:b7:8a (LinksysG_83:b7:8a)
Fragment number: 0
Sequence number: 2672

IEEE 802.11 wireless LAN management frame
Wireless Security - Access

● Isolation via LAN configurations
 – Turn off DHCP and use non-standard IP range
 • Makes it a little harder for a hacker to get onto your LAN
 • Sniffers often reveal IP range and manual setting is simple
Wireless Security - Access

- DMZ, subnet or VLAN
 - Fences off the wireless portion from the wired LAN
 - Complex and often expensive
- Netbios or firewall options
 - Some routers allow the blocking of file sharing or ports/protocols between wireless and wired
Wireless Security - Access

- **802.1x** – effectively, a wireless gate
 - Authenticates users based on various credentials
 - Requires hardware support and/or external server
 - Requires a client (supplicant)
 - Xsupplicant (OSS), Meetinghouse (Commercial)
 - No data encryption
 - A basis for WPA
802.1x example
Wireless Security - WPA

- WiFi Protected Access
- Combines 802.1x (access control) with WEP (encryption) and adds frequent key changes to dodge hacks that depend on large numbers of packets.
- Other than dictionary attacks against WPA-PSK, no known vulnerabilities.
- wpa_supplicant needed (XSupplicant soon)
Recap, by steps

- Load the driver
- Activate the interface
- Set wireless parameters
- Association
- 802.1x (if appropriate)
- DHCP
- Surf
Resources and Links

- Linux & Wireless LANs
- Open1X.org
- Unofficial 802.11 Security Web Page
- AbsoluteValue Systems Adapter List
- SourceForge
- DSLReports Wireless Networking Forum
- FreeRADIUS mailing list
Resources and Links - 2

- irc.freenode.net
 - #ATU, #ndiswrapper, #hostap

- **WiFi Networking News**

- **Manufacturer sites**
 - Meetinghouse Data Systems
 - Funk Software
 - Cisco, Linksys, ZyXEL

- LUGs