
(c) Alex Perry Slide 1 of
30

 Linux in Embedded Systems for Engineers

 Southern California Linux Expo 2005

 This talk is aimed at engineers.

 It contrasts the advantages of software development using a full Debian
Linux distribution on the desktop with the more restrictive and different

challenges of an embedded target where many of the goodies go
away.

 Alexander Perry
 PAMurray
 IEEE Consultants, San Diego
 UCSD Extension, Engineering

 alex@pamurray.com
 http://www.pamurray.com/

(c) Alex Perry Slide 2 of
30

 Boxed Linux - Contents

 Lots of packaging
 Outer shrinkwrap wrapper, cardboard interior box
 Printed thin card outer sleeve, mostly advertising
 An instruction manual and/or booklet
 A CD-ROM with a printed image on the front
 Raw disk content is an aggregation, separate license

 The files on the CDROM form a "distribution"
 A consistent common runtime environment
 A collection of Packages to choose from

 A "Package" is a specially formatted file
 Any programs, data files, install scripts, etc
 Associated documentation, examples, licenses ...
 Carefully configured to run in that environment
 "Dependencies" specify one package needs another

(c) Alex Perry Slide 3 of
30

 The Debian GNU/Linux distribution

 13000 packages of software
 The Linux kernel and associated administrative programs
 Various GNU tools, utilities and applications
 Thousands of other applications and alternatives
 Apache, MySQL, Perl, OpenOffice, KDE, Mozilla, LTSP, ...

 An automatic tool "lintian" validates packages
 Nonconformant submissions are automatically rejected
 Searchable public bug tracking, http://bugs.debian.org/
 Program "reportbug" helps all users submit useful reports

 Validated dependency data between packages
 Security and version upgrades are reliable and fast
 Upgrades rarely need any reboots
 Active users are not disturbed

(c) Alex Perry Slide 4 of
30

 Release Process offers Integration Quality

Source Versions
New Upstream

Bug Tracking
System

Automatic Compile
(Every architecture)

Experimental Unstable Testing Stable Archived

Sid Sarge Woody Potato ...Slink
RELEASE

MANAGER

Software
Engineers Workstations

Desktop Reliable
Servers

Two years
Uptime ...

Four years
Uptime ...

Incoming

Package
Pool

Validation

USER COMMUNITY...

MAINTAINER

 Extensive documentation ensures consistency
 Software vendor suggestions - 7 pages
 Repository recommendations - 7 pages
 Policy manuals (nine parts) - 143 pages
 Maintainer guide, Developers reference - 103 pages
 Menu, Internationalization support - 150 pages

(c) Alex Perry Slide 5 of
30

 Most Distributions offer Similar Benefits

 Several hundred other distributions to choose
 http://www.lwn.net/Distributions/

 There is a price for that environment
 Utilities are compiled for general purpose usage
 Scripts automatically run to adjust settings
 Databases keep track of files, programs, versions
 Scripts add/remove packages, with error checking
 Often a hundred megabytes of overhead disk space

 Embedded linux has to be different
 The processors are often slower, with less memory
 Filesystem space is usually thousands of times smaller
 16 MB of flash in a chip, instead of a 60 GB drive

(c) Alex Perry Slide 6 of
30

 Who does Embedded Package Management

 In many cases, it’s the engineer
 Manually configure, adapt and build source code
 Find dependencies and select compatible versions
 Yields a small, fast product - but a lot of effort

 Sometimes a simple makefile
 Embedded distributions find compatible versions
 Often, an included makefile can build everything
 Engineer just has to make adaptations as needed
 Can only make limited changes before makefile breaks

 There are lightweight tools
 Embedded Debian (cross tools), Familiar (ipkg etc)
 Provide the install and removal management benefits

 Clearly, the robustness of desktop packaging is lost

(c) Alex Perry Slide 7 of
30

 Where do Embedded Distros come from?

 Making a distribution is hard work
 Why are companies releasing them ?
 To gather customers in other product
 Hopes to migrate you to fee product
 So review the lock-in features
 eg. Lynux and LynxOs with BlueCat
 To get assistance in supporting them
 They built distro for inhouse use
 Hoping to share support effort with you
 Compare their work quality against yours
 eg. Lightning Linux (Switzerland)
 To sell their consulting services
 Sample of the quality of their work
 Small, clean code, easy to extend
 eg. ucLinux original release

(c) Alex Perry Slide 8 of
30

 Licensing - Part of the Business Strategy

 Licenses define what can and cannot happen
 They constrain the business models associated with them
 Both for the software author and for the recipient
 It’s bad to accidentally destroy your profit opportunity

 Projects have associated business plans
 Therefore, only certain licenses can be incorporated
 Similarly, not all licenses will be offered to users
 Whoever is responsible for such planning must decide

 License selection is not an engineering activity
 It is a management decision role
 Advised by legal support if necessary

(c) Alex Perry Slide 9 of
30

 Where are Embedded Distros going ?

 General purpose distributions change fast
 Backward compatibility not always considered
 You may need to port code every year
 At risk of being left behind and abandoned

 Specialist distributions tend to bog down
 When existing developer team is happy
 It does what they want from it
 You may be the only active developer

 Somewhere there is a happy medium
 Active development and improvement
 But slow and methodical, stable
 Hard to judge at short notice

(c) Alex Perry Slide 10 of
30

 The Four Sections of an Embedded System

 A bootloader to run at power on
 Needs to read flash storage (and write new images)
 Often constrains how Linux can share that flash
 Partition table restrictions, kernel size, etc

 Custom configured Linux kernel
 Support for integrated features and peripherals
 All the generic drivers you need, none of the rest

 Peripherals needed by the application
 Usually unlike the equivalents on desktop computers
 May be directly connected (not PCI), or custom logic
 These drivers not needed to start the Linux kernel

 A filesystem with all software
 This is what that package management is building

(c) Alex Perry Slide 11 of
30

 Bootloader - Thin Embedded System

 The bootloader is like BIOS and GRUB in one
 It loads the kernel and initial ramdisk
 Some of them can load these from the network
 The x86’s have PXE and/or EtherBoot for example
 On desktop computers, this is called DISKLESS boot

 Embedded systems use flash, not disk
 Can’t call it FLASHLESS - bootloader is in flash
 This is fast; avoids flash write and flash read
 Reboots are as fast as sending 1MB over Ethernet

 Recommended as a quick way of iterating
 First to get a kernel version that starts cleanly
 Second to get a ramdisk that starts all peripherals

(c) Alex Perry Slide 12 of
30

 Linux kernel overview

 The only program with absolute control
 Manages all the memory and disk paging
 Operates all device and peripheral interfaces
 Enforces security and access limiting rules
 Manages network connections and protocols

 Memory is virtualized
 Programs reuse the addresses transparently
 Disk drives use memory too
 Store pending data that’s about to be written
 All reads, and completed writes, kept for a while

 Unused memory is moved out
 Backing storage is usually on a disk drive partition
 If short of disk space, can use network storage
 May have several prioritized swap areas available
 May swap out inactive programs for more disk cache

(c) Alex Perry Slide 13 of
30

 Non-Network devices and peripherals

 Device drivers mostly portable
 eg, PCI boards work on x86, PowerPC, ARM, IA64, etc

 No special new APIs
 Each peripheral becomes a special kind of file
 Normal access uses read and write as usual
 Special features all use the ioctl() calls

 These files have permissions
 Hardware access is treated like regular files
 Simplifies deciding which users can use what
 Read and/or write, match by user and/or group
 The "root" user bypasses these file checks

(c) Alex Perry Slide 14 of
30

 Network connectivity

 Protocols are integrated
 Enables secure and fast implementation of many protocols
 Firewall routing consistently enforced on all traffic
 Security rules are user independent - unless explicit

 Network interfaces are equivalent
 Simplifies configuration, testing, debugging
 Type independent routing and traffic switching
 Virtualized, loopback and userspace capabilities

 No restriction on number of interfaces
 Simultaneously use multiple ISPs, VPNs and LANs
 Start and stop links, change settings, anytime
 Wireless includes WiFi, Bluetooth, Ham, GSM, etc

 Network sockets are key to distributed computing
 Allows computing effort to be offloaded elsewhere

(c) Alex Perry Slide 15 of
30

 Adding modules to the kernel

 Modules add/remove any time
 Separately compiled additions to a kernel
 Do not reside in memory unless loaded (for use)

 Useful for temporary hardware
 PCMCIA / PC card, PCI hot swap chassis, SCSI,
 USB and Firewire devices, SCSI bridge, etc

 Their licensing need not be GPL
 Linus has made the statement and decision
 Thus, closed source device drivers available
 Provides support for hardware without documentation
 Consequently rarely portable to embedded targets

(c) Alex Perry Slide 16 of
30

 The Universal Serial Bus (USB)

 Popular for Consumer Electronics
 Quickly and easily attach your mobile peripherals
 Lets you avoid opening the case to use PCI slots

 USB 1.1 is the standard service
 Driver is UHCI-HCD or OHCI-HCD depending on chipset
 Latency for I/O is one millisecond (can be more)
 Less than 1MB/sec bandwidth - shared among all devices

 USB 2.0 is on newer computers/chipsets
 Driver is EHCI-HCD ... if not present, falls back to 1.1
 Latency for I/O can be reduced as low as 125 microsecs
 Available bandwidth is comparable to fast ethernet

(c) Alex Perry Slide 17 of
30

 Embedded target may not have spare PCI

 Difficult to install peripherals for diagnostics

 So hang them all off one external USB hub
 Hard drive (extra storage, swap, logfiles)
 Printer port (syslog hardcopy, hardware control)
 VGA adaptor (graphics display, video monitoring)
 Network interface (dedicated GDB, syslog, NFS)
 Serial port (flash programmer, external watchdog)

 If your chipset does not have integrated USB
 Plug-in boards for PCI, mini-PCI and PC-Card available

 USB uses memory mapped, bus mastered I/O
 Reduced processor impact compared to other options
 One interrupt triggered, even for many active devices
 This is comparable to the more expensive ethernet cards

(c) Alex Perry Slide 18 of
30

 Kernel availability and customization

 All releases made available for download
 http://www.kernel.org/
 The whole kernel is GPL licensed
 Would you like to read seven million lines of code ?

 Interactive menu-driven configuration
 Select only the hardware you really have available
 Remove unused code for a smaller and faster kernel
 Choose features, optimize for a specific purpose

 Distributions make this automatic
 Compiling the source, installing as an alternative
 You can try it and, if it doesn’t work, stop using it

(c) Alex Perry Slide 19 of
30

 Linux runs on many different platforms

 Targets many fast processor families
 More than any other operating system ...
 Intel/AMD/Sun/HP’s 64-bit processors
 IBM’s 370 mainframe family
 PowerPC, ARM, Sparc, MIPS, etc

 Also targets small, cheap, low power ones
 The Dragonball (aka Palm pilots)
 ColdFire, i960, 68k, 8086

 For clean code, simply recompile it
 Even for 3D graphics card drivers

(c) Alex Perry Slide 20 of
30

 Platform mobility is a big benefit

 Your project currently only targets one
 Remember it is likely to migrate with hardware pricing
 So try to write clean code now so you just recompile

 Many bugs hide when only one target
 Therefore, build for several, even if you only ship one
 If targeting a PDA, make it run on the desktop too

 If there is a risk of processor change
 Make a single build environment switchable
 A global parameter to specify computer platform
 Most package build engines support it - built in
 Need to review command line switches carefully

(c) Alex Perry Slide 21 of
30

 Test the File System Contents

 Put stable kernel and ramdisk in flash
 If network boot is faster than flash boot, keep using it
 The rest of the file system (after ramdisk) however ...

 Share the filesystem between target and host
 The whole thing can be NFSROOT mounted by the target
 Attach a SCSI disk drive with dual host adaptors
 Hand over USB flash drives using a device sharing hub
 Install a USB device adapter card directly in the host

 If this is a partition and not compressed
 Use RSYNC to update only the changed blocks

(c) Alex Perry Slide 22 of
30

 uClinux, the microcontroller version

 uC ... as in Microcontroller
 For systems without a Memory Management Unit (MMU)
 Therefore no memory or hardware protection
 Do not use floating point - software "float" only
 Must throttle user load, and network listen()

 Real Time extensions invaluable
 Tenfold improvement - now comparable to ordinary PC
 Interrupt response is measured in processor cycles

 Multitasking support limitations
 Works fine, runs init and inetd by default
 Static linked binaries can use lots of RAM
 fork() impossible since it implies a MMU
 vfork() works, fine for spawning processes
 Stack is statically sized, but malloc() works

(c) Alex Perry Slide 23 of
30

 uClinux architectures

 Motorola
 MC68EZ328 DragonBall, M68328 - ucsimm kit
 M68EN302, M68EN322, MC68360 QUICC
 M68020 (Atari and Prisma projects)
 MCF5272 etc - ucdimm kit
 MC68EC030 - Cisco 2500,3000,4000 routers
 5206 ColdFire, 5307 - ADOMO set top box
 ESA SPARC - Leon open source
 ARM
 Atmel AT91 - with eval board
 ARM7TDMI - Aplio VoiceOverIP telephone
 StrongARM, the Intel XScale family
 Intel - i960
 Axis
 ETRAX 100 - AXIS 2100 Network Camera
 Hitachi - SuperH

(c) Alex Perry Slide 24 of
30

 Modular Application Capability

 Scalable software is often client-server
 Or more layers, with interfaces and abstraction
 Data centers can segregate and consolidate layers
 This offers more performance and also lower cost

 Embedded versions are often monolithic
 That’s good if your device is always independent
 Reasonable if the processing layers are not reusable
 But what about multifunction and/or connected devices?

 The device doesn’t have a managed network
 No data center admins to specify service locations
 You need to install one of the discovery protocols

(c) Alex Perry Slide 25 of
30

 Modular Application - Example breakdown

 This is not a special Operating System or kernel feature

 Just a collection of co-operating programs
 They can all be on different computers
 There are many choices for each category
 Delivering a highly customizable environment

 Here are ten categories to consider ...

 1. Your application(s), eg OpenOffice
 The many programs you wanted to run
 Some may be across the internet somewhere
 Power users may have dozens at one time

(c) Alex Perry Slide 26 of
30

 Provision of a graphical environment

 2. The X windowing environment, eg xfree86
 Multiple programs can simultaneously use it
 Needs access to mouse, keyboard and display

 3. Window manager, eg blackbox
 Keeps track of windows and menu bars
 Decides which window receives keyboard input

 4. Desktop manager, eg kde
 Maps documents and files to screen icons
 Provides consistency between logins

 5. Device drivers for user peripherals
 Audio, Video, Input, removable storage
 This (and Linux) may be the only local software

(c) Alex Perry Slide 27 of
30

 Other associated invisible services

 6. Network related infrastructure
 Name, storage, outgoing mail, time, authentication, ...
 These can be outsourced, need a local fallback solution
 A stub service tries to discover the local server

 7. Printing (and other peripherals)
 Conversion of documents into postscript or PDF
 Rendering of queued job to printer binary file
 Delivery of binary page images through kernel driver
 ... these can be serialized if not offloadable

 8. Additional storage (memory/disk)
 Most interactive apps need per-user storage areas
 Nothing to stop you putting some swap space there
 Add swap while app holds a file open, then close
 Also enlarges VFS space for any temporary files

(c) Alex Perry Slide 28 of
30

 Stability, Reliability, Scalability, Security

 9. Multiprocessor support, of course
 SMP motherboards, processors sharing memory, hardware
 Clusters of separate computers, networked together
 Installations of hundreds of Linux systems is routine
 OpenMosix and NUMA are applicable for small systems

 Embedded market has already gone multiprocessor
 Use those capabilities - don’t ignore or disable them
 More performance for customers with multiple devices

 10. Virtual Private Networking (VPN) support
 Needed by the users, accessing their remote services
 Useful for the device, to secure its cluster traffic

 Smart cards and public key infrastructure (PKI)
 Protecting data and any migrated process images

(c) Alex Perry Slide 29 of
30

 Thank you for your interest

 Any questions ?

(c) Alex Perry Slide 30 of
30

 Revision Control is Crucial

 Most open source projects use CVS
 There are better alternatives available
 But, unless you want all engineers to have to learn two
 Use CVS for the in-house code archive

 CVS is structured and has many features
 Spend several days learning to do branch control well
 History is a project’s lifeblood - don’t be scared to commit

 CVS is concurrent, no locking mechanism
 Better to use the branching and merging features
 Enables parallel development, regresion and bug fixing

 Weekly developer team meeting (or more often)
 Review branch status, goals and any major checkins
 Discuss tricks, mistakes and anything wrongly committed

